
Version 2.0

Exploring Computer Science Page 1

Joanna Goode
University of Oregon

Gail Chapman
Computer Science Teachers Association

 © Computer Science Equity Alliance, 2009

Version 2.0

Exploring Computer Science Page 2

Acknowledgements

Contributing Writers
George Benainous, Hollywood High School, Los Angeles, California
Robb Cutler, Tutor Crossing, Inc., Santa Clara, California
Judy Hromcik, Arlington High School, Arlington, Texas
Michelle Hutton, The Girl’s School, Mountain View, California
John Landa, South East High School, South Gate, California

Curriculum Design Team Members
Joanna Goode, University of Oregon
Gail Chapman, Computer Science Teachers Association
Jane Margolis, UCLA
Todd Ullah, Los Angeles Unified School District
Diane Watkins, Los Angeles Unified School District
Chris Stephenson, Computer Science Teachers Association

Sponsors & Supporters
This curriculum was created under the auspices of the Broadening the Participation in Computing
National Science Foundation grant, "Into the Loop: An University K-12 Alliance to Increase and Enhance
the Computer Science Learning Opportunities for African-American, Latino/a, and Female Students in
the Second Largest School District in the Country". Principal Investigator: Jane Margolis (UCLA); Co-
Principal Investigators Joanna Goode (University of Oregon), Todd Ullah (LAUSD), Deborah Estrin
(UCLA).

Version 2.0

Exploring Computer Science Page 3

CONTENTS

Course Overview ... 5

Goals .. 5

Standards ... 5

Hardware ... 5

Software .. 5

Prerequisites .. 5

The Instructional Philosophy of Exploring Computer Science 6

Introduction to Curricular Approach ... 6

Concrete Instructional Strategies .. 10

Assessment .. 11

Overview of the Instructional Materials .. 12

Scope and Sequence .. 13

Overview Chart ... 16

Topic Descriptions and Objectives ... 21

Unit 1: Human Computer Interaction (5 weeks) ... 21

Unit 2: Problem Solving (5 weeks) ... 22

Unit 3: Web Design (6 weeks) ... 23

Unit 4: Introduction to Programming (7 weeks) ... 24

Unit 5: Robotics (7 weeks) ... 25

Unit 6: Computing Applications (6 weeks) .. 26

Unit 1: Human Computer Interaction ... 28

Daily Overview Chart ... 29

Daily Lesson Plans .. 30

Activities .. 47

Final Project ... 64

Unit 2: Problem Solving ... 67

Version 2.0

Exploring Computer Science Page 4

\

Daily Overview Chart ... 68

Daily Lesson Plans .. 69

Activities .. 84

Final Project ... 89

Unit 3: Web Design ... 91

Daily Overview Chart ... 92

Daily Lesson Plans .. 93

Flash Animation Supplement .. 119

Final Project ... 124

Unit 4: Introduction to Programming .. 126

Daily Overview Chart ... 127

Daily Lesson Plans .. 129

Activities .. 158

Rubrics and Solutions .. 169

Final Project ... 181

Unit 5:Robotics ... 186

Daily Overview Chart ... 187

Daily Lesson Plans .. 188

Activities .. 213

Final Project ... 230

Unit 6: Computing Applications .. 240

Daily Overview Chart ... 241

Daily Lesson Plans .. 242

Activities .. 271

Rubrics ... 280

Final Project ... 288

Version 2.0

Exploring Computer Science Page 5

Course Overview

Goals

The goals of Exploring Computer Science are to develop the computer science skills of algorithm development,
problem solving and programming. Students will also be introduced to topics such as interface design, limits of
computers and societal and ethical issues of software engineering.

This curriculum has been developed for a culturally, linguistically, and socially diverse group of students in Los
Angeles Unified School District. District-wide, student ethnicities include .3% American Indian, 3.7% Asian, .4%
Pacific Islander, 2.3% Filipino, 73.0% Latino, 10.9% African American, 8.8% White, and .6% Other or multiple
responses. Over 38% of students are English-language learners, with most English language learners students
speaking Spanish as their primary language. Furthermore, 74% of students qualify for free or reduced lunches.

Standards

The standards used for the Exploring Computer Science curriculum are based on the topics and goals outlined in
A Model Curriculum for K-12 Computer Science developed by the ACM K-12 task force curriculum committee.
Most of the objectives in the course align with the Level III course, Computer Science as Analysis and Design,
while some objectives are necessarily aligned with the Level II course, Computer Science in the Modern World, in
order to provide appropriate background knowledge for the more advanced topics.

Hardware

An ideal laboratory environment for this course would include one computer for each student in the class.
These computers can be either Macintosh or PC depending on availability. A networked system would make
installation of software easier for the teacher.

Software

Each computer in the classroom should have a web browser installed that allows students to perform searches
and make use of a variety of websites and internet tools. Teachers will need to download and install the Scratch
programming language available at http://www.scratch.mit.edu and the Python programming language
available at http://www.python.org.

Prerequisites

This course will be considered a college preparatory elective for California students, geared towards 11th and
12th graders, and will require Algebra as a course prerequisite. Thus, the course should provide a rigorous, but
accessible, introduction to computer science. No previous computer science course is required to take this
course.

http://www.scratch.mit.edu/�
http://www.python.org/�

Version 2.0

Exploring Computer Science Page 6

The Instructional Philosophy of Exploring Computer Science

 Introduction to Curricular Approach

Exploring Computer Science teaches the creative, collaborative, interdisciplinary, and problem-solving
nature of computing with instructional materials which feature an inquiry-based approach to learning and
teaching. As part of this curriculum, students will delve into real-world computing problems that are
culturally-relevant and address social and ethical issues while delivering foundational computer science
knowledge to students. Students will engage in several in-depth projects to demonstrate the real-world
applications of computing.

This curriculum builds off of learning theories that view learning as a social and cultural process that does
not only occur in a vacuum at school; that is, students bring to school bodies of knowledge from their
lives, culture, and communities. Building from students’ prior knowledge, the collection of problem
solving skills, everyday “algorithmic thinking”, and social and ethical knowledge of computer-related
problems will result in a more student-centered curriculum. Each unit connects students’ informal
knowledge, technology skills, and beliefs about computing to the theoretical and foundational tenets of
computer science. Students will become members of a “computing community of practice” in the
classroom where they will be introduced to the behavior, language, and skills of computer scientists.
Furthermore, the interdisciplinary nature of computing allows for the incorporation of subject-matter
topics across disciplines into the computing curriculum.

The Nine Principles of Learning from the Institute for Learning provide the theoretical foundation of
research-based instructional practices that provide the foundation for the Secondary Redesign
Comprehensive Plan. These nine principles underscore the beliefs of the Los Angeles Unified School
District; they are integrated throughout and explain the pedagogy used in the course.

1. Organizing for Effort
An effort-based school replaces the assumption that aptitude determines what and how much students
learn with the assumption that sustained and directed effort can yield high achievement for all students.
Everything is organized to evoke and support this effort, to send the message that effort is expected and
that tough problems yield to sustained work. High minimum standards are set and assessments are geared
to the standards. All students are taught a rigorous curriculum aligned to the standards, along with as
much time and expert instruction as they need to meet or exceed expectations. This principle is one of
the guiding beliefs common in every school in the Los Angeles Unified School District.

2. Clear Expectations
If we expect all students to achieve at high levels, then we need to define explicitly what we expect
students to learn. These expectations need to be communicated clearly in ways that get them "into the
heads" of school professionals, parents, school communities and, above all, students themselves.
Descriptive criteria and models of work that meets standards should be publicly displayed, and students
should refer to these displays to help them analyze and discuss their work. With visible accomplishment
targets to aim toward at each stage of learning, students can participate in evaluating their own work and
setting goals for their own efforts.

Version 2.0

Exploring Computer Science Page 7

3. Fair and Credible Evaluations
If we expect students to put forth sustained effort over time, we need to use assessments that students
find fair, and that parents, community, and employers find credible. Fair evaluations are ones that
students can prepare for: therefore, tests, exams and classroom assessments as well as the curriculum
must be aligned to the standards. Fair assessment also means grading against absolute standards rather
than on a curve, so students clearly see the results of their learning efforts. Assessments that meet these
criteria provide parents, colleges, and employers with credible evaluations of what individual students
know and can do.

4. Recognition of Accomplishment
If we expect students to put forth and sustain high levels of effort, we need to motivate them by regularly
recognizing their accomplishments. Clear recognition of authentic accomplishment is the hallmark of an
effort-based school. This recognition can take the form of celebrations of work that meets standards or
intermediate progress benchmarks en route to the standards. Progress points should be articulated so
that, regardless of entering performance level, every student can meet real accomplishment criteria often
enough to be recognized frequently. Recognition of accomplishment can be tied to an opportunity to
participate in events that matter to students and their families. Student accomplishment is also recognized
when student performance on standards-based assessments is related to opportunities at work and in
higher education.

5. Academic Rigor in a Thinking Curriculum
Thinking and problem solving will be the "new basics" of the 21st century, but the common idea that we
can teach thinking without a solid foundation of knowledge must be abandoned, so must the idea that we
can teach knowledge without engaging students in thinking. Knowledge and thinking are intimately joined.
This implies a curriculum organized around major concepts that students are expected to know deeply.
Teaching must engage students in active reasoning about these concepts. In every subject, at every grade
level, instruction and learning must include commitment to a knowledge core, high thinking demand, and
active use of knowledge.

6. Accountable Talk
Talking with others about ideas and work is fundamental to learning but not all talk sustains learning. For
classroom talk to promote learning it must be accountable to the learning community, to accurate and
appropriate knowledge, and to rigorous thinking. Accountable talk seriously responds to and further
develops what others in the group have said. It puts forth and demands knowledge that is accurate and
relevant to the issue under discussion. Accountable talk uses evidence appropriate to the discipline (e.g.,
proofs in mathematics, data from investigations in science, textual details in literature, documentary
sources in history) and follows established norms of good reasoning. Teachers should intentionally create
the norms and skills of accountable talk in their classrooms.

7. Socializing Intelligence
Intelligence is much more than an innate ability to think quickly and stockpile bits of knowledge.
Intelligence is a set of problem-solving and reasoning capabilities along with the habits of mind that lead
one to use those capabilities regularly. Intelligence is equally a set of beliefs about one's right and
obligation to understand and make sense of the world, and one's capacity to figure things out over time.

Version 2.0

Exploring Computer Science Page 8

Intelligent habits of mind are learned through the daily expectations placed on the learner by calling on
students to use the skills of intelligent thinking, and by holding them responsible for doing so, educators
can "teach" intelligence. This is what teachers normally do with students from whom they expect
achievement; it should be standard practice with all students.

8. Self-management of Learning
If students are going to be responsible for the quality of their thinking and learning, they need to develop
and regularly use an array of self-monitoring and self-management strategies. These meta- cognitive skills
include noticing when one doesn't understand something and taking steps to remedy the situation, as well
as formulating questions and inquiries that let one explore deep levels of meaning. Students also manage
their own learning by evaluating the feedback they get from others; bringing their background knowledge
to bear on new learning; anticipating learning difficulties and apportioning their time accordingly and
judging their progress toward a learning goal. These are strategies that good learners use spontaneously
and that all students can learn through appropriate instruction and socialization. Learning environments
should be designed to model and encourage the regular use of self-management strategies.

9. Learning as Apprenticeship
For many centuries most people learned by working alongside an expert who modeled skilled practice and
guided novices as they created authentic products or performances for interested and critical audiences.
This kind of apprenticeship allowed learners to acquire complex interdisciplinary knowledge, practical
abilities, and appropriate forms of social behavior, Much of the power of apprenticeship learning can be
brought Into schooling by organizing learning environments so that complex thinking is modeled and
analyzed, and by providing mentoring and coaching as students undertake extended projects and develop
presentations of finished work, both in and beyond the classroom.

The units in Exploring Computer Science contain individual lessons that taken together as a unit fit the
construct for inquiry-based learning outlined in the following chart adapted from the “5 E Model”.

Version 2.0

Exploring Computer Science Page 9

 The Inquiry-Based Learning Cycle

(Adapted from the 5 E Model”, R. Bybee)

Stage of Inquiry in an
Inquiry-Based

Science

Program

Possible Student Behavior Possible Teacher Strategy

Engage

Asks questions such as, Why did this
happen? What do I already know about
this? What can I find out about this? How
can I solve this problem? Shows interest in
the topic.

Creates interest. Generates curiosity.
Raises questions and problems. Elicits
responses that uncover student
knowledge about the concept/topic.

Explore

Thinks creatively within the limits of the
activity.

Tests predictions and hypotheses. Forms
new predictions and hypotheses. Tries
alternatives to solve a problem and
discusses them with others. Records
observations and ideas. Suspends
judgment. Tests idea

Encourages students to work together
without direct instruction from the
teacher. Observes and listens to
students as they interact. Asks probing
questions to redirect students'
investigations when necessary.
Provides time for students to puzzle
through problems. Acts as a consultant
for students.

Explain

Explains their thinking, ideas and possible
solutions or answers to other students.
Listens critically to other students'
explanations. Questions other students'
explanations. Listens to and tries to
comprehend explanations offered by the
teacher. Refers to previous activities.
Uses recorded data in explanations.

Encourages students to explain
concepts and definitions in their own
words. Asks for justification (evidence)
and clarification from students.
Formally provides definitions,
explanations, and new vocabulary.
Uses students' previous experiences as
the basis for explaining concepts.

Elaborate

Applies scientific concepts, labels,
definitions, explanations, and skills in new,
but similar situations. Uses previous
information to ask questions, propose
solutions, make decisions, design
experiments. Draws reasonable
conclusions from evidence. Records
observations and explanations

Expects students to use vocabulary,
definitions, and explanations provided
previously in new context. Encourages
students to apply the concepts and
skills in new situations. Reminds
students of alternative explanations.
Refers students to alternative
explanations.

 Checks for understanding among peers.
Answers open-ended questions by using

Refers students to existing data and
evidence and asks, What do you know?

Version 2.0

Exploring Computer Science Page 10

Stage of Inquiry in an
Inquiry-Based

Science

Program

Possible Student Behavior Possible Teacher Strategy

Evaluate

observations, evidence, and previously
accepted explanations. Demonstrates an
understanding or knowledge of the
concept or skill. Evaluates his or her own
progress and knowledge. Asks related
questions that would encourage future
investigations.

Why do you think...? Observes
students as they apply new concepts
and skills. Assesses students'
knowledge and/or skills. Looks for
evidence that students have changed
their thinking. Allows students to
assess their learning and group process
skills. Asks open-ended questions such
as, Why do you think...? What
evidence do you have? What do you
know about the problem? How would
you answer the question?

Concrete Instructional Strategies

There are several concrete instructional strategies that are included in each unit to implement this
culturally relevant, student-centered, and inquiry-based vision.

• Each unit begins with a description of the topic, an explanation of the importance of this topic, possible
social applications of this topic, and objectives/standards for the unit.

• Whenever possible, units begin with kinesthetic activity to get students involved in the unit topic.
Students are more engaged when they go beyond seatwork to gain familiarity with the scope of a topic.
Acting out computing concepts is one way to have students actively engaged in the curriculum.

• Whenever possible, units present the final unit project at the beginning of the unit so students
understand what type of project they will engage in at the end of the unit. Daily assignments help
scaffold their knowledge towards gaining the knowledge needed to complete a particular project. The
final project represents a culmination of their new knowledge and provides an opportunity to expand
their understandings to a particular socially-relevant problem.

• Computing terms and definitions are explicit and part of the instruction. The curriculum avoids
unnecessary jargon which might distract learning of the critical content. Students have opportunities to
use writing to reinforce the literacy component behind these computing terms and definitions.

• Foundational computing topics are connected to the ‘pop-technology’ students have likely encountered:
cellular phones, iPods, MySpace / Facebook, blogs, Internet browsing, etc.

Version 2.0

Exploring Computer Science Page 11

• Whenever possible, real-world problems are presented in the context of socially-relevant issues
impacting urban communities (housing, safety, poverty, health care, access to equal rights, educational
opportunities, improving social services, translation services, transportation, etc.)

• Student have opportunities to work on problems that they help define and can individualize – i.e.
selecting their own content for Web sites; creating original, not pre-scripted, problem-solving strategies,
etc.

• Activities are designed to encourage students to work in a variety of collaborative settings: peer-
programming, group research projects, etc. which encourage conversations around computing topics.

• Students will experience a variety of ways to communicate their answers – academic writing, writing a
letter to a friend or companion, using presentation software, developing graphics or animation, listing
algorithms, drawing illustrations, oral presentations, etc.

• Units incorporate examples of careers in computing as they arise in the curriculum. Students will be
given hypothetical opportunities to act as a professional to take on the behavior and skills to solve a
given problem.

• Though using technology is a core component of this curriculum, using computers is not necessarily
embedded in the curriculum on a daily basis.

It is important to note that each unit focuses on different instructional strategies; this is purposeful. In some
cases, it is because the particular subject matter lends itself more successfully to a particular set of strategies,
but this was also done to highlight the wide variety of possible strategies that can be used effectively in teaching
this course. We encourage teachers to experiment by trying strategies that work well for them in a variety of
different places in the curriculum. For example, the peer review process utilized in Unit 4 could be adapted for
use in other units; the idea of an “elbow” partner can be used in all units. There are many other possibilities to
consider.

Assessment

With the exception of the final projects, there are no specific assessments listed in the lesson plans. There are
also very few specific “homework” assignments. Differences in grading policies, types of assessments required,
and student schedules make it difficult to gauge the best combination of assessment tools to use in a particular
environment. Teachers are encouraged to determine which class activities might lend themselves to some
research outside of class and which might make useful assessments. Additional assessment instruments can be
developed by individual teachers or teacher teams. All forms of assessment should meet the criteria outlined in
the Nine Principles of Learning.

Version 2.0

Exploring Computer Science Page 12

Overview of the Instructional Materials

The pages that follow contain the core of the materials teachers will need in order to plan and deliver Exploring
Computer Science. The materials begin with a Scope and Sequence chart that details the various topics included
in the course, along with the unit in the course where each is introduced and reinforced. Teachers should
continue to refer back to previous units where appropriate. For example, Unit 3 builds on many of the Unit 1
concepts by taking students from discussing and viewing websites to actually using and developing them. The
approximate time allotment noted in the chart includes all activities from introduction through application.

Following the Scope and Sequence is an overview of each unit that includes the unit description and overall
objectives of the unit. There is also a table that indicates the topics for each instructional day of the course.

Finally, are the daily lesson plans with detailed student activities and teaching strategies for each day. Each
lesson has been built on a 55 minute class period. In schools where class periods are shorter or longer (or on
varying block schedules) adjustments will need to be made; such adjustments may include combining lessons
(for longer class periods) or assigning parts of the lesson for homework (for shorter class periods).

An attempt was made to provide enough detail to the teaching strategies sections to give teachers clear
guidance as to the activities involved and the types of questions that might need to be asked to prompt
discussion. At the same time, an effort was made not to be prescriptive.

Each unit includes supplementary materials, a final project, and a suggested rubric for the final project.

Version 2.0

Exploring Computer Science Page 13
Legend: I—Introduce, R—Reinforce, A—Apply

Scope and Sequence

Topic Focus HCI PS WEB PR ROB CA
1. Principles of Computer
Organization (~1 week)

1. Terminology I R R A A

 2. Hardware components I R R A A
 3. Software components I R R A A
 4. Interaction of components I R R A A
 5. Purchasing a computer I
2. Internet concepts/Web Design
and Development (~1 week)

1. Internet elements/Terminology I R

 2. Search engine fundamentals I R
 3. Search engines and directories I R
 4. Refining search parameters I R
 5. Evaluating Web sites I R
 6. Security on the Internet I R
3. Models of intelligent behavior
(~1 week)

1. What is intelligence? I R,A

 2. Natural language I R,A
 3. Knowledge-based systems I R,A
 4. Machine learning I R,A
 5. Game playing, searching I
 6. Myth of intelligent behavior I R,A
4. Interdisciplinary Utility of
Computers and Problem Solving
(~2 weeks)

1. How are computers used? I

 2. Information storage and retrieval I R,A R,A
 3. Decision-making support I R,A R,A
 4. Data visualization I R,A R,A
 5. Communications I R,A R,A
 6. Modeling and design I R,A R,A
 7. Art, music, video I
 8. Education and training I
 9. E-commerce I
 10. Embedded systems I
5. Design for Usability (~6 weeks) 1. Fundamental HCI concepts I R
 2. Identify elements of user-friendly

Web sites
I R

 3. HTML tags I
 4. Styles and markup I
 5. Design a user-friendly Web site I
 6. Create a user-friendly Web site I
 7. Design a user-interface for a

program
 I R A A

 8. Documentation techniques I R A A
 9. Web development tools I
6. Problem Solving and Program
Design (~6 weeks)

1. Problem-solving process I R R A A

 2.Understanding the problem I R R A A

Version 2.0

Exploring Computer Science Page 14
Legend: I—Introduce, R—Reinforce, A—Apply

 3. Exploring problems : problem-
solving heuristics and strategies

 I R R A A

 4. Design creation and representation I R R A A
 5. Problem data I R R A A
 6. Solution accuracy I R R A A
 7. Program coding and testing I R R A A
 8. Design Re-evaluation and

refinement
 I R R A A

 9. Decomposing the complex I R R A A
 10. From Source to Execution I R A A
 11. Abstraction I R R A A
 12. Communicate results I R R A A
7. Discrete Mathematics—
Connections between
mathematics and computer
science (~3 weeks)

1. Logic I R A A

 2. Binary number system I
 3. Basic Sets I R A A
 4. Concepts of Functions I R A A
 5. De Morgan's Laws I R A A
 6. Graphs I R A A
8. Programming Languages (~8
weeks)

1. Terminology I R,A R,A

 2. Representation of text I R,A R,A
 3. Representation of numbers I R,A R,A
 4. Data types I R,A R,A
 5. Programming style I R,A R,A
 6. Objects I R,A R,A
 7. Input and Output I R,A R,A
 8. Expressions I R,A R,A
 9. Selection I R,A R,A
 10. Iteration I R,A R,A
 11. Interactive programming I R,A R,A
 12. Methods (functions) and

parameters
 I R,A R,A

 13. Properties I R,A R,A
9. Fundamentals of Hardware
Design (~1 week)

1. Conversion between decimal and
binary number systems

 I

 2. Binary counting and switching I
 3. Representation of numbers I R R R
10. Limits of Computing (~2
weeks)

1. Computers vs. humans I R R R

 2. Algorithm efficiency I R R
 3. Computationally intensive problems I R R
 4. Parallel processing I R
 5. Unsolvable problem for the

computer
 I R

 6. Computationally hard problems. I R R
11. Principles of Software
Engineering (~5 weeks)

1. Software design team I R

Version 2.0

Exploring Computer Science Page 15
Legend: I—Introduce, R—Reinforce, A—Apply

 2. Break a problem statement into
specific requirements

 I R R R,A R,A

 3. Design a solution to a problem I R R R,A R,A
 4. Code a solution from a design I R R,A R,A
 5. Test a solution to identify bugs I R R A A
 6. Pair programming I
 7. Team Oral Presentations I R R R R R
12. Ethical Issues and Social Issues
(weave throughout)

1. Terminology

 2. How technology has changed
 3. The effect of technology
 4. Privacy and sharing of information
 5. Intellectual property
 6. Responsible use of software
 7. Software licensing agreements
 8. Digital rights management (DRM)
 9. Intellectual property/fair use

conflicts

 10. Current legislation and/or
litigation

13. Careers in Computing (weave
throughout)

1. List careers related to computers

 2. Personal career choices
 3. Skills and academic background
 4. Choose a computing career

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 16

Overview Chart

Human Computer Interaction Unit Overview

Instructional Day Topic

1-2 Explore the concepts of computer and computing.

3-4 Learn the terminology of hardware components necessary for the
purchase of a home computer.

5-6 “Demystify” and learn the function of the parts of a personal computer by
dissecting a real computer.

7-9 Explore the world wide web and search engines. Experiment with a
variety of search techniques and internet resources. Evaluate websites.

10-11 Introduce the concept of a computer program as a set of instructions.

12-14 Explore the idea of intelligence – especially as it relates to computers.
Explore what it means for a machine to “learn”. Discuss whether
computers are intelligent or whether they only behave intelligently.

15 Field trip to UCLA campus

16-17 Explore how computers are used for communications

18-21 Explore how computers are used for information storage and retrieval,
decision-making support, visualizing data modeling and design, art, music,
and video, education, e-commerce, embedded systems, and relaxation
and entertainment.

22-25 Final projects and presentations

Problem Solving Unit Overview

Instructional Day Topic

1 Introduce the four steps of the problem solving process.

2-4 Apply the problem solving process. Use different strategies to plan and
carry out the plan to solve several problems.

5-7 Reinforce the four steps of the problems solving process. In particular,
the strategy of finding a problem similar to one that has already been
solved is explored.

8-9 Count in the binary number system.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 17

10-12 Convert between binary and decimal numbers in the context of topics that
are important to computer science.

13-14 Discuss encryption and its role in keeping information private.

15-17 Explore sorted and unsorted lists and various sorting algorithms.

18-19 Introduce the linear and binary search algorithms.

20-21 Introduce minimal spanning trees and how graphs can be used to help
solve problems.

22-25 Students complete final projects.

Web Design Unit Overview

Instructional Day Topic

1-2 Issues of social responsibility in web use are explored as well as the
relative merits of the influence of the web on society, personal lives, and
education.

3-4 Examine various Web 2.0 applications and their use in social web based
search as well as shared media and data storage.

5-7 Explore the concept that free web applications can serve as replacements
for desktop applications. Three different web applications are considered.

8-9 Introduce the use of basic html and css markup.

10-11 Explore the concept of separating style from structure by keeping separate
html and css files and making code more reusable.

12 Explore image editing for the web using Photoshop or an image editor of
choice.

13 Use styling tables in html.

14 Use lists and nested lists for presenting information such as outlines in a
web page.

15 Introduce the use of css as a page layout method. Consider spacing and
placement as design elements.

16-18 Practice using style tables, lists and css in the context of a web page
creation project.

19 Introduce basic javascript. Add interactivity to web pages.

20 Introduce javascript functions. Create modular, reusable code and using
javascript to learn fundamental programming concepts.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 18

21-22 Introduce several web user interface elements combining javascript, html,
css, and Photoshop.

23 Implement advanced functionality with javascript libraries. Create
accordion menus based on the mootools implementation.

24-25 Further explore the use of javascript library effects, including lightbox
slideshow and sliding image puzzles.

26-27 Explore javascript and the use of random numbers.

28-30 The class completes final projects.

Introduction to Programming Unit Overview

Instructional Day Topic

1
Introduce the Scratch programming language, including the basic terms
utilized in the language.

2-3
Practice using the basic features of Scratch in the context of creating a
simple program.

4 Create a dialogue between two sprites.

5-6 Introduce the methods of moving sprites in Scratch.

7-8
Practice the concept of event driven programming through the creation of
an alphabet game.

9 Introduce the concept of broadcasting via role play.

10 Develop a story to be used in a Scratch program.

11-15
Write Scratch stories and present them to the class. Peer reviews are
conducted.

16 Introduce the concept of variable.

17 Introduce the concept of conditionals.

18-19 Introduce And, Or and randomness.

20
Apply knowledge of conditionals to develop a Rock Paper Scissors program
in Scratch.

21 Build on previous programming concepts to create a timer.

22-26
Create a timing game in Scratch and present it to the class. Peer reviews
are conducted.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 19

27
Investigate two types of games that may provide ideas for the final
project.

28 Explain final project and the rubric for the final project.

29-33
Write Scratch programs for either My Community or Game project. Peer
reviews will be conducted.

34-35 Presentations of final projects.

Robotics Unit Overview

Instructional Day Topic

1 What is a robot? Identify the criteria that make an item a robot.

2-3 Evaluate robot body designs and create algorithms to control robot
behavior.

4 Set up Lego Mindstorms kit.

5 Build robot base.

6-7 Introduce the features of NXT Brick—the “brain” of the robot.

8-9 Introduce the features of the Mindstorms NXT software.

10-14 Program the robot using the Mindstorm Robot Educator Software
tutorials.

15 Introduce RoboCup real life robotic competition and write instructions for
tic-tac-toe.

16 RoboTic-Tac-Toe Tournament and introduction to RoboCup Junior Dance
Tournament.

17-20 Build, program, and present a dancing robot.

21-25 Build program and present a rescue robot.

26-35 Final project: Design, build and program a robot that solves a stated
problem.

Computing Applications Unit Overview

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 20

Instructional Day Topic

1 Introduce the Python programming environment and the Pen class.

2 Introduce drawing in Python by using coordinates .

3-5 Create a program to draw a dream house or car using the concept of pair
programming.

6 Introduce the use of Dialogs in Python.

7-10 Introduce the concepts of software development activities, models and
design teams. Practice dialogs and working in teams to create an order
form program.

11 Introduce numerical types and math in Python.

12 Introduce functions in Python.

13 Practice the use of functions through programs to exchange currencies
and calculate measurements.

14 Introduce conditionals in Python.

15-17 Practice the use of conditionals and functions through the creation of a
Choose Your Own Adventure program.

18 Introduce while loops in Python.

19 Introduce the for loop in Python.

20 Introduce the concept of lists.

21-25 Practice the use of loops, conditionals, and list through the creation of an
opinion poll program.

26-30 Complete final project.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 21

Topic Descriptions and Objectives

Unit 1: Human Computer Interaction (5 weeks)

Topics to be addressed:

• Principles of Computer Organization
• Internet Concepts
• Models of Intelligent Behavior
• Interdisciplinary Utility of Computers and Problem Solving in the Modern World

Topic Description:

The student will be introduced to the major components of the computer, including: input, output, memory,
storage, processing, software, and the operating system. Students will consider how Internet elements (e.g.
email, chat, WWW) are organized, will engage in effective searching, and will focus on productive use of e-mail.
Fundamental notions of Human Computer Interaction (HCI) and ergonomics are introduced. Students will learn
that “intelligent” machine behavior is not “magic” but is based on algorithms applied to useful representations
of information. Students will learn the characteristics that make certain tasks easy or difficult for computers, and
how these differ from those that humans characteristically find easy or difficult. Students will gain an
appreciation for the many ways (types of use) in which computers have had an impact across the range of
human activity, as well as for the many different fields in which they are used. Examples illustrate the broad,
interdisciplinary utility of computers and algorithmic problem solving in the modern world.

Objectives:

The student will be able to:

• Identify the various functional components of a computer.
• Match a list of computer terms and definitions/functions.
• Describe the interaction of the various functional components of the computer.
• Make appropriate decisions when purchasing a computer for home use.
• List at least three strengths and weaknesses of each of three Internet elements and at

least one use for each.
• Use at least two Internet elements.
• Use appropriate tools and methods to execute Internet searches which yield

requested data.
• Develop and use a rubric to evaluate the results of web searches and reliability of

information found on the web.
• Given a list of tasks from several application areas of artificial intelligence, indicate

whether or not computers can do those tasks, using current technology.
• Find (in newspapers, magazines, through interviews, or on the Internet) and describe

three examples of the use of technology in non-computer fields.
• Choose the appropriate category for each item in a list of technology applications.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 22

Unit 2: Problem Solving (5 weeks)

Topics to be addressed:

• Problem Solving and Program Design
• Discrete Mathematics—Logic, Functions and Sets
• Connections between Mathematics and Computer Science

Topic Description:

This unit covers the basic steps in algorithmic problem-solving, including the problem statement and
exploration, examination of sample instances, design, coding, testing, and verification. Tools for
expressing design will be used. This unit also focuses on the connections between mathematics and computer
science. Students will be introduced to selected topics in discrete mathematics including (but not limited to)
Boolean logic, functions, sets, and graphs. Students will be introduced to the binary number system. Students
are also introduced to searching and sorting algorithms and graphs. Suitable exercises are presented that
illustrate the value of mathematical abstraction in solving computing problems.

Objectives:

The student will be able to:

• Name and explain the steps in the problem-solving process.
• Solve a problem by applying the problem-solving process.
• Express a solution using standard design tools.
• Determine if a given algorithm successfully solves a stated problem.
• Write algorithms that use simple and complex logic statements (relational operators

and Boolean operators).
• Count in binary and convert between decimal and binary numbers.
• Describe selected searching and sorting algorithms.
• Write an algorithm that uses mathematical functions.
• Apply simple graph concepts in problem solving.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 23

Unit 3: Web Design (6 weeks)

Topics to be addressed:

• Web Page Design and Development
• Design for Usability
• Hierarchy and Abstraction in Computing

Topic Description:

This section prepares students to take the role of a developer by expanding their knowledge of programming
and web page design and applying it to the creation of web pages, programs, and documentation for users and
equipment. Students will explore issues of social responsibility in web use. They will explore a variety of web
applications. Students will learn to plan and code their web pages using and check for usability. Students learn
to create user-friendly Web sites. Students will apply fundamental notions of Human Computer Interaction (HCI)
and ergonomics.

Objectives:

The student will be able to:

• Correctly use HTML tags to create web pages, apply styles to HTML documents to
control presentation, and express the design of a web site using standard tools.

• Create user-friendly and functional web sites and programs that apply good HCI
practices.

• Create web sites and programs that recognize hardware and software constraints of
potential client machines and/or environments.

• Prepare documentation.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 24

Unit 4: Introduction to Programming (7 weeks)

Topics to be addressed:

• Program design
• Programming constructs

Topic Description:

Students will be introduced to some basic issues associated with program design and development.
Students design algorithms and programming solutions to a variety of computational problems using Scratch.
Programming problems include control structures, functions, parameters, objects and classes, structured
programming and event-driven programming techniques.

Objectives:

The student will be able to:

• Code, test, and execute a program that corresponds to a set of specifications.
• Convert a word problem into code using top-down design.
• Select appropriate data types.
• Write structured program code.
• Draw a series of diagrams showing the scope and values of variables during execution

of a simple program.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 25

Unit 5: Robotics (7 weeks)

Topics to be addressed:

• Fundamentals of Hardware Design
• Applications of Computing

Topic Description:

This unit introduces robotics as an advanced application of computer science. Students explore how to integrate
hardware and software in order to solve problems. Students will see the effect of software and hardware design
on the resulting product. Students will apply previously learned topics to the study of robotics.

Objectives:

The student will be able to:

• Identify the criteria that describe a robot and determine if something is a robot.
• Describe the steps that happen when a computer processes an instruction.
• Match the actions of the robot to the corresponding parts of the program.
• Build, code, and test a robot that solves a stated problem.
• List and explain ways in which different hardware designs affect the function of a

machine.
• Identify multiple ways to program the robot to achieve a goal and explain why one is

better than another.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 26

Unit 6: Computing Applications (6 weeks)

Topics to be addressed:

• Limits of Computing
• Principles of Software Engineering
• Applications of Computing

Topic Description:

This unit provides an elementary introduction to computational complexity theory to encourage an appreciation
for the relative efficiency of various algorithms. Students are introduced to examples of computationally “hard”
problems, computationally unsolvable problems, and problems that are made difficult by the complexity of the
realities they attempt to model (air traffic control, human intelligence, weather). Students are introduced to
software engineering concepts and team-oriented approaches for solving problems. They learn the essential
methods of the software development life cycle and use these methods in one or more group projects involving
large data sets.

Objectives:

The student will be able to:

• List activities in which humans excel over computers and activities in which
computers excel over humans.

• Calculate the number of steps required to execute a given algorithm.
• Describe and run computationally intensive problems.
• Describe at least one problem computers cannot solve.
• Describe at least one computationally hard (NP) problem.
• Name the different phases of the software development process.
• Use a software process model (such as the waterfall, RAD, incremental, or XP) to

solve a problem.
• Complete a project as a software design team with assigned roles and responsibilities

for each member.
• Complete programs using pair programming.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 27

The following topics should be woven throughout the course as appropriate:

• Ethical Issues and Social Issues
• Careers in Computing

Topic Description:

The proliferation of computers and networks raises a number of ethical issues. Technology has had both positive
and negative impacts on human culture. Students will be able to identify ethical behavior and articulate both
sides of ethical topics. Students study the responsibilities of software users and software developers with
respect to intellectual property rights, software failures, and the piracy of software and other digital media. They
are introduced to the concept of open-source software development and explore its implications. Students
identify and describe careers in computing and careers that employ computing. Information is provided about
the required technical skill set, soft skills, educational pathways, and ongoing training required for computing
careers. Students also explore how computers are used in other career choices. Finally, students are made
aware of which additional secondary-level courses might be needed in preparation for various careers.

Objectives:

The student will be able to:

• Distinguish between ethical and legal issues in a case study by listing the issues that can
be resolved through the legal system and those issues that cannot be legally resolved.

• Defend an ethical stance given a controversial or ethically ambiguous situation in a
debate.

• List and explain at least two positive and negative effects of one technological innovation
on human culture.

• Define intellectual property and state the impact of provisions to protect it.
• Identify at least two benefits and two drawbacks of using commercial, public domain,

open source, and shareware.
• Demonstrate behavior in the use of technology that conforms to school and local code.
• Define intellectual property, explain the rights of owners and end users, and provide

rationale for the need to protect owners and end users.
• Define software piracy and discuss its effect on software company profits and the price of

software to the consumer.
• List at least two ways in which software (and other digital media) is protected and state

at least one current law to protect software and the makers of software.
• Describe the responsibilities of software professionals to society and to each other.
• List the advantages and disadvantages of open-source software.
• List five careers related to computers.
• List three or more skills needed to succeed in at least three computer-related careers.
• State the level of education and ongoing training needed for at least three careers.

Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 28

Unit 1:

Human Computer Interaction

© Computer Science Equity Alliance, 2009

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 29

Daily Overview Chart

Instructional Day Topic

1-2 Explore the concepts of computer and computing.

3-4 Learn the terminology of hardware components necessary for the
purchase of a home computer.

5-6 “Demystify” and learn the function of the parts of a personal computer by
dissecting a real computer.

7-9 Explore the world wide web and search engines. Experiment with a
variety of search techniques and internet resources. Evaluate websites.

10-11 Introduce the concept of a computer program as a set of instructions.

12-14 Explore the idea of intelligence – especially as it relates to computers.
Explore what it means for a machine to “learn”. Discuss whether
computers are intelligent or whether they only behave intelligently.

15 Field trip to UCLA campus

16-17 Explore how computers are used for communications.

18-21 Explore how computers are used for information storage and retrieval,
decision-making support, visualizing data modeling and design, art, music,
and video, education, e-commerce, embedded systems, and relaxation
and entertainment.

22-25 Final projects and presentations

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 30

Daily Lesson Plans

Instructional Days: 1-2

Topic Description: What is a computer? In this lesson the concepts of computer and computing are explored through
examples of each.

Objectives:

The student will be able to:

• Explain and give examples of the concepts of computer and computing.

Outline of the Lesson:

• Journal Entry. (10 minutes)

• Exploring computers (60 minutes)

• Classification of computing groups (30 minutes)

• Definition of the terms computer and computing. (10 minutes)

Student Activities:

• Complete journal entry.

• Groups of students create posters of their ideas of what a computer is.

• Participate in a gallery walk and complete group presentations.

Teaching/Learning Strategies:

• Journal Entry: What is a computer?
o Have students write responses to the question in their journals and then share the response with their

elbow partner.

• Exploring computers.
o Divide students into groups of 3 or 4. Ask the students to discuss examples of computers (or things

containing computers). As they find examples of computers, have them form a list and create a poster
that highlights their ideas. (Examples of computers include: Macintosh, Windows PC, cell phone, mp3
player, most appliances (television, coffee maker, washer, dishwasher, etc.), cars, medical equipment,
planes, watches, cash registers, ATMs, traffic lights, scoreboards, humans, and calculators.)

o Have student groups present their posters and share their ideas. After each presentation, give the other
students an opportunity to suggest why any particular example seems not to be a computer (or is not
obviously a computer). If necessary, ask questions to draw out the student questions and responses.
(For example, if the student says “dishwasher,” you might ask, “why is a dishwasher a computer.”)

• Classification of computing groups.
o Ask students to do a gallery walk of the posters and put group labels on items that appear in the posters.

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 31

o Following the gallery walk, create a new list with the various items listed under a group classification.

• Definition of the terms computer and computing.
o Revisit the question “What is a computer?” and ask the possibly more pertinent question, “What is

computing?”
o Have the students use their list of “computers” and their classifications to help formalize their answers.
o Note that there is no “correct” answer. These definitions will be revisited and possibly modified

throughout the course of the unit.
o Reinforce the idea of different types of computers and classifications by reviewing the lists and groups

created by the students.

• Assignment
o Ask students to find and bring in to class a print advertisement (from a newspaper, magazine, or the

internet) for a personal computer.

Resources:

• No additional resources needed

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 32

 Instructional Days: 3-4

Topic Description: The correct terminology for computer hardware components is discussed.

Objectives:

 The student will be able to:

• Use the correct terminology for computer hardware components.

• Describe the uses for computer hardware components.

• Choose hardware components for various types of users.

Outline of the Lesson:

• The terminology and uses for computer hardware (45 minutes)

• Matching of hardware components to type of user (65 minutes)

Student Activities:

• Complete Computer Components Webquest.

• Create posters of components needed for various types of users.

• Participate in a gallery walk.

• Volunteers present their print advertisements.

Teaching/Learning Strategies:

• The terminology for computer hardware
o Have students complete the Computer Components webquest with their elbow partner.

• Matching of hardware components to type of user
o Once students have completed the webquest, each pair should choose one of the two advertisements

they brought to class and create a poster of a computer with the components indicated in the
advertisement.

o Have students complete a gallery walk of the posters.
o Have several volunteers discuss their posters.

Resources:

• Computer Components Webquest

• Wikipedia has more detail about all of the hardware terminology listed: http://www.wikipedia.org

http://www.wikipedia.org/�

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 33

Instructional Days: 5-6

Topic Description: Students explore the functionality of various parts of a personal computer by dissecting a real
computer.

Objectives:

The student will be able to:

• Describe the functionality of the parts of a personal computer .

Outline of the Lesson:

• Dissection of a computer (95 minutes)

• Review of components and uses (15 minutes)

Student Activities:

• Work in teams to take apart a computer and label the parts based on their research from Days 3-4.

Teaching/Learning Strategies:

• Dissection of a computer.
o Have the students work in teams (the number of students per team depends on the number of

computers you have) to carefully take apart a computer.
o Emphasize the importance of safety when working with electronics and tools of any type.
o During the dissection, students should label the parts based on their research from Days 3-4.
o Circulate the room and answer questions.

• Review the main parts of the hardware of a personal computer.
o Ask the students if they better understand the “technical jargon” that appears in the ads. Challenge

them to think about what features they might want if they were purchasing a home computer (i.e., large
screen, fast, pretty color, etc.).

Resources:

• Several old personal computers (working or non-working) that can be taken apart by the students. These
computers can often be found at garage sales or may be destined for the garbage heap by a school or local
business. If possible, get several different types of computers that have a variety of components. Do not use
school computers or computers which need to remain in working condition!

• Various screwdrivers (both slotted-head and phillips-head)

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 34

Instructional Days: 7-9

Topic Description: Search engines and how they work are explored through trying various internet search techniques.
A selection of Internet resources that are useful for finding information are introduced. Several websites are evaluated
by using a rubric to determine if they are “good” websites.

Objectives:

 The student will be able to:

• Explain the process by which a web page is found on the internet and displayed.

• Explain how search engines such as Google work.

• Explain how to refine searches to retrieve better information.

• Perform other types of searching.

• Identify other resources for finding information.

• Develop and use a rubric to evaluate websites.

Outline of the Lesson:

• Journal Entry (5 minutes)

• How the internet and search engines work (55 minutes)

• Role Play (20 minutes)

• Other resources for finding information (15 minutes)

• Experimentation with these resources (25 minutes)

• Web site evaluation criteria. (20 minutes)

• Hands-on evaluation of web sites (25 minutes)

Student Activities:

• Complete journal entry.

• Complete How the Internet and Search Engines Work Webquest Part I.

• Participate in a role play of what happens when browsing a web page.

• Complete How the Internet and Search Engines Work Webquest Part II.

• Identify other resources for finding information.

• In groups use the other resources to find relevant information.

• Identify evaluation criteria and work in groups to evaluate websites using the rubric.

Teaching/Learning Strategies:

• Journal Entry: How do you think search engines like Google work? How do they find the web pages
 you want to view?

• How internet domains and the web work
o Have students complete the How the Internet and Search Engines Work Webquest Part I

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 35

o After students complete Part I, hand out the index cards described in the supplemental materials and
have the students “role play” what happens when browsing a web page. Your job is to be the director –
to prompt the students as necessary and ensure that they’re saying the correct “lines”!

o Have students complete How the Internet and Search Engines Work Webquest Part II
o Once students have completed the examples in Part II, discuss with them some of the ways of refining

searches.
o Have the students explore by trying out the various searching techniques.

• Other resources for finding information
o Have the students work with their elbow partner to identify at least three other resources (other than

search engines) that they use to find information on the internet along with advantages (or
disadvantages) over a general search engine.

o Ask students to post their results. Some examples might be:
 Sites such as Google Maps or Mapquest to get directions or see satellite or street view images of

anywhere in the country.
 Address and telephone number lookup sites such as Switchboard or Yellow Pages to get

personal and business information.
 Sites such as the Internet Movie Database to get information on movies and television shows.
 Sites such as Dictionary.com and Thesaurus.com to look up the meaning or spelling of a word or

to find a synonym of a word.
 Encyclopedic sites such as Wikipedia, Encyclopedia Britannica, or How Stuff Works to find an

overview of a particular topic.
 The Wayback Machine which stores snapshots of websites on various dates so that you can “go

back in time” to see a site as it used to be.

• Experimention with these resources
o Have the students work in groups to use the resources identified above in ways that are relevant to

them. For example,
 Use Google maps and StreetView to find and display where they live or the location of the

school.
 Use Wikipedia and Encyclopedia Britannica to find information on a topic they’re studying in

another class. Have them compare the two articles and decide which provides more
information.

 Use the Wayback Machine to view an early version of the school website. Compare how much
it has changed from the school’s current website.

• Web site evaluation criteria
o Display or distribute a copy of the front page to http://www.martinlutherking.org This is a website

which purports to be a “True Historical Examination” of the life of Martin Luther King, Jr., but is, in
reality, a hateful site run by a white nationalist organization.

o This particular site is obviously biased. However, it is important to be able to tell when a site is more
subtly biased.

o Journal Entry: How might you be able to evaluate a site to determine whether or not it is “good.” What
criteria do you use to evaluate them?

o Ask students to volunteer their criteria.

http://www.martinlutherking.org/�

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 36

• Hands-on evaluation of web sties
o An excellent resource with examples of different types of websites appropriate for evaluation can be

found at the New Mexico State University Library website: http://lib.nmsu.edu/instruction/eval.html.
o Have the students work in groups and ask them to use the Website Evaluation Rubric (included in the

supplemental materials) to evaluate the example sites found at NMSU.
o Discuss the results of their evaluations.

Resources:

• How the Internet and Search Engines Work Webquest

• Browsing a Web Page Role Play

• Google’s advanced searching techniques:
http://www.google.com/support/bin/static.py?page=searchguides.html&ctx=basics&hl=en

• The Wayback Machine: http://www.archive.org

• Google Maps (including StreetView): http://maps.google.com

• Wikipedia: http://www.wikipedia.org

• Encyclopedia Britannica: http://www.britannica.com

• Mapquest: http://www.mapquest.com

• Internet Movie Database: http://www.imdb.com

• Switchboard: http://www.switchboard.com

• Yellow Pages: http://www.yellowpages.com

• How Stuff Works: http://www.howstuffworks.com

• The white nationalist site on Martin Luther King, Jr.:
http://www.martinlutherking.org

• Website Evaluation Rubric

http://en.wikipedia.org/wiki/Turing_test�
http://www.archive.org/�
http://en.wikipedia.org/wiki/ELIZA�
http://en.wikipedia.org/wiki/Turing_test�
http://en.wikipedia.org/wiki/Turing_test�
http://en.wikipedia.org/wiki/Turing_test�
http://en.wikipedia.org/wiki/Turing_test�
http://en.wikipedia.org/wiki/Turing_test�
http://en.wikipedia.org/wiki/Turing_test�
http://en.wikipedia.org/wiki/Turing_test�
http://www.martinlutherking.org/�

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 37

Instructional Day: 10-11

Topic Description: This lesson introduces the concept of a computer program within the context of a set of instructions
for completing a common activity.

Objectives:

 The student will be able to:

• Explain the concept of a computer program.

Outline of the Lesson:

• Following directions (55 minutes)

• Designing a program (15 minutes)

• Running a program (25 minutes)

• Being more precise with instructions (15 minutes)

Student Activities:

• Complete the Following Directions quiz.

• Complete the Drawing Pictures Activity.

• Write the instructions for making a peanut butter and jelly sandwich.

Teaching/Learning Strategies:

• Following directions
o Hand out a copy of the Following Directions quiz (included in the supplemental materials) to each

student face down in front of them. Each student should have a blank piece of paper and a pencil as
well.

o Give the students five minutes to do the quiz. Make note of how many students stand up and shout
“hooray.”

o Collect the papers when time has expired.
o Point out that a perfect paper is one which has only the word “December” written in the top left corner.

(The directions said to read all parts of the test before doing anything and step 13 says to only complete
step #3.)

o Give students about 10 minutes to complete the Drawing Pictures Activity.
 Ask volunteers to show their pictures and explain why they drew the pictures as
 they did.

• After the first volunteer, ask if someone drew it differently.
o Ask the students what following directions has to do with computers. Prompt them as necessary that a

computer follows a specific set of directions (or instructions) called a computer program and must
follow all of the directions precisely.

• Designing a program

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 38

o Ask the students to write down a set of instructions for a computer to make a peanut butter and jelly
sandwich. Give them 5-10 minutes to write down these instructions.

o Collect the instructions.

• Running a program
o Take out the bread, peanut butter, jelly, and knife and put them on your desk. Pick a set of instructions

for making a sandwich (best to pick one which is not too detailed).
o Read each instruction and carry it out… literally. For example, if the first instruction is “put the peanut

butter on the bread,” take the jar of peanut butter and put it on the loaf of bread. If an instruction says
to “spread the peanut butter on the bread,” use your fingers rather than a knife. If an instruction says
to “cut the sandwich in half,” be creative and cut it between the two slices of bread. In other words,
your goal is to show that instructions need to be very precise.

o Repeat the process with another set of instructions

• Being more precise with instructions
o Clearly, no matter how precise they tried to be, the instructions for making a peanut butter and jelly

sandwich were open to interpretation. Ask the students to brainstorm how we could overcome this
problem so that a computer could follow the instructions and make a perfect sandwich each time.

o Guide the students toward the idea that we need a better “language” than English for describing the
instructions. This is, in fact, the idea behind many computer programs. There is a limited set of
instructions which define very precisely what the computer does. For example, we can have a computer
turn on a “dot” of a specific color in a specific location on the screen. By having the computer turn on
many different dots in different colors, we can have the computer draw a picture. Note though that we
don’t have an instruction for the computer to “draw a picture of a house” as that’s much too general
and too open for interpretation.

Resources:

• http://www.justriddlesandmore.com/direct.html
The basis for the “following directions” quiz (the quiz was modified slightly.)

• Following Directions Quiz

• Drawing Pictures Activity

• Bread, peanut butter, jelly, and a knife.

http://www.justriddlesandmore.com/direct.html�

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 39

Instructional Days: 12-14

Topic Description: The question “What is intelligence?” is addressed through discussion of the differences between
humans and computers. Various models of machine learning are investigated along with the concept of natural
language understanding.

Objectives:

The student will be able to:

• Explain the idea of intelligence – especially as it relates to computers.

• Explain what it means for a machine to “learn”.

• Discuss whether computers are intelligent or whether they only behave intelligently.

Outline of the Lesson:

• Journal Entry (15 minutes)

• Differentiation between humans and computers (95 minutes)

• A simple model of machine learning (55 minutes)

Student Activities:

• Complete journal entry.

• Complete CS Unplugged Activity 20: The Turing Test.

• Interact with web-based chatterbots (Part I of The Computer Intelligence Activity).

• In groups, play several rounds of a guessing game (Part II of The Computer Intelligence Activity).

Teaching/Learning Strategies:

• Journal Entry: What is intelligence? Are computers intelligent? Why or why not?
o Volunteers share their responses.

• Differentiating between humans and computers.
o CS Unplugged Activity 20: The Turing Test

 Assign and explain roles to 4 students.
 Telephone-based communication (cell phones, texting, “landline” telephone service
 Follow the directions under “What to Do”.

o Have students complete Part I of the Computer Intelligence Activity.
 Internet-based communication (email, chat, facebook, Internet telephony)
 Assign each pair of students (students work with their elbow partner) two of the questions from

the Turing Test Activity.
 Discuss the results.

• A simple model of machine learning.
o Have students complete Part II of the Computer Intelligence Activity.

 Assign students to groups of 3 or 4 and assign each group 2 of the games in the activity.

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 40

 Discuss the results.

Resources:

• Computer Science Unplugged Activity 20: The Turing Test (http://www.csunplugged.org)

• Computer Intelligence Activity

http://www.csunplugged.org/�

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 41

Instructional Day: 15

Topic Description: Students participate in a field trip to various computer labs on the UCLA campus.

Objectives:

The student will be able to:

• List and describe a variety of uses for computers.

Outline of the Lesson:

• Field trip (55 minutes)

Student Activities:

• Participate in the field trip.

Teaching/Learning Strategies:

• Encourage students to ask questions at the various labs visited. In particular, try to elicit responses that will
preview the Days 18-21 topics.

Resources:

• No additional resources necessary

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 42

Instructional Days: 16-17

Topic Description: The use of computers for communications and the impact this has had on society is discussed.

Objectives:

The student will be able to:

• Explain how computers are used for communications.

Outline of the Lesson:

• Journal Entry (5 minutes)

• Identification communications mechanisms (10 minutes)

• Impact of changes to communications on society (95 minutes)

Student Activities:

• Complete journal entry.

• Identify communications mechanisms.

• In groups, students discuss the impact of changes to communications on society.

• Groups create a poster summarizing their thoughts.

• Groups display their posters and discuss with the class.

Teaching/Learning Strategies:

• Journal Entry: List as many computer-based communications mechanisms as you can.

• Identification of communications mechanisms
o Volunteers provide examples from their journal entry. List these on the board.
o Prompt students as necessary with examples:

 Internet-based communication (email, chat, facebook, Internet telephony)
 Telephone-based communication (cell phones, texting, “landline” telephone service)
 News and information “on demand”

• Impact of changes to communications on society
o Divide class into groups of 3-4. Assign each group 1 or 2 of the mechanisms on the list depending on the

size of the class and number of items on the list. Ask the groups to do the following:
 Imagine life without some or all of the computer-based communications mechanisms that we

now take for granted.
 List some of the consequences of an absence of technology (for example, without cell phones,

the ability to instantly reach anyone goes away).
 Based on these consequences, draw conclusions about the impact of the presence of the

communications mechanism. (For example, if the absence of cell phones means the absence of
the ability to instantly contact anyone, then the presence of cell phones means that we now
have the ability to instantly contact anyone. One conclusion we can draw is that we have less
privacy than we used to.) Consider each of the following broad categories of societal change:

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 43

• Privacy

• Safety

• Globalization

• Connectivity (keeping in touch with people)

• Permanence of historical information
 Discuss whether these consequences have a positive or negative impact on society and, if

negative, how these consequences can be minimized.
 Create a poster summarizing their thoughts and prepare a presentation for the class

• Groups discuss their posters with the class.
o Challenge the students to predict what communications will be like in 5 years, 10 years, and 25 years.

Resources:

• Students will need to use a variety of websites and other resource materials appropriate to their topic.

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 44

Instructional Days: 18-21

Topic Description: In this lesson, students learn how computers are used for information storage and retrieval,
decision-making support, visualizing data, modeling and design, art, music and video, education, e-commerce,
embedded systems, relaxation and entertainment.

Objectives:

The student will be able to:

• Explain how computers are used for information storage and retrieval, decision-making support, visualizing data,
modeling and design, art, music and video, education, e-commerce, embedded systems, relaxation and
entertainment.

Outline of the Lesson:

• Research on how computers are used for information storage and retrieval, decision-making support, visualizing
data, modeling and design, art, music and video, education, e-commerce, embedded systems, relaxation and
entertainment (75 minutes)

• Write reports and create visuals (90 minutes)

• Group presentations (55 minuts)

Student Activities:

• Groups do research on how computers are used for information storage and retrieval, decision-making support,
visualizing data, modeling and design, art, music and video, education, e-commerce, embedded systems,
relaxation and entertainment.

• Groups write reports and create visuals.

• Groups make presentations.

Teaching/Learning Strategies:

• Post the possible topics to research: how computers are used for
o information storage and retrieval
o decision-making support
o visualizing data
o modeling and design
o art, music and video
o education
o e-commerce
o embedded systems
o relaxation and entertainment

• Students divide into groups to research the topic of their choice. Group sizes will depend on the size of the
class. Combine topics or add others as makes sense to ensure a variety of topics are addressed.

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 45

• Student groups should create a written report and visual to present to the rest of the class. Among the things to
consider in the research are:

o Historical change
o Impact on society
o Positive uses
o Negative uses
o Privacy issues
o Careers
o Include a list of websites used for research

• Student groups give presentations to the class.
o Encourage discussion of each topic.

Resources:

• Students will need to use a variety of websites and other resource materials appropriate to their topic.

 Version 2.0

Exploring Computer Science—Unit 1: Human Computer Interaction Page 46

Instructional Days: 22-25

Topic Description: Complete final unit project research and presentations.

Objectives:

 The student will be able to:

• Incorporate the objectives of the unit into the final project.

• Present their projects to the class.

Outline of the Lesson:

• Research and development of final project (165 minutes)

• Project presentations by student teams (55 minutes)

Student Activities:

• Student teams research and complete final projects.

• Student teams present final projects.

Teaching/Learning Strategies:

• Distribute final project information and rubric.
o Set up teams and answer initial questions.
o Circulate the room and monitor student work.

• Project presentations by student teams.
o Have each team present an overview of their project to the class in five minutes (be strict on time). This

should not be a “reading” of their report, but rather a presentation using the board or presentation
software that highlights:
 The project goal
 The steps they took to achieve the goal possibly including:

• How the team divided up the work

• The tools they used

• The resources they used
 Any problems or challenges they encountered
 Their conclusion

o Allow five minutes (again, be strict on time) for questions and any discussion.

Resources:

• Human Computer Interaction Final Project

• Human Computer Interaction Final Project Sample Scenarios

• Human Computer Interaction Final Project Suggested Rubric

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 3 Page 47

Activities

Computer Components Webquest

Your job is to use the internet to investigate the different components (parts) of a computer. You may use the link
below to Dell’s website, or you can use another website.

Dell Configuration

Below are the different components for you to investigate:

• Processor
• Operating System
• Memory
• Hard Drive
• Optical Drive
• Monitor
• Video Card
• Sound Card
• Speakers
• Keyboard
• Mouse
• Modem

For each of the components write down:

• The name
• What it is used for
• What are the different options or sizes for the components

Hint: On the dell website, you can just click the different components on the bottom. Some of them have links that say
Help Me Choose that give more information about the components.

http://configure.us.dell.com/dellstore/config.aspx?c=us&cs=19&l=en&oc=DXCWQP1&s=dhs�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 48

How the Internet and Search Engines Work Webquest

Part I
Search engines like google help you find the web pages that you are looking for. Go to
http://computer.howstuffworks.com/search-engine1.htm and take notes on How Search Engines Work. Be sure to
include answers to the following questions:

1. 1. When you type in a web address (say www.ebay.com), how does the computer know where to get the
information for that web page?

2. How do search engines know what websites to list when you search for a particular word?

Part II
Go to www.google.com to answer the following questions:

1. How many results do you get if you search for: simpsons animation?

2. How many results do you get if you search for: “simpsons animation”? (this time it’s inside quotes)

3. What happens when you use the quotes?

4. What happens if you search for: simsons? (yes with the p missing)

http://computer.howstuffworks.com/search-engine1.htm�
http://www.ebay.com/�
http://www.google.com/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 49

Browsing a Web Page Role Play

Card 1

You are a computer user. You can browse to any of the following websites:

� www.ebay.com

� www.google.com

� www.wikipedia.org

To browse to a website, find a web browser and tell the web browser which website you would like displayed.

Card 2

You are a web browser. When asked to display a website, do the following:

� Pick a letter at random between A and D. Ask the root nameserver whose name is that letter to give you the IP
address for the domain of the website you were given (i.e., if the website address were www.facebook.com,
you would ask the root nameserver for the IP address of facebook.com).

� Ask the nameserver whose address is the IP address you were given by the root nameserver for the IP address for
the website address.

� Ask the webserver whose address is the IP address you were given by the nameserver for the HTML code for the
website address you were given by the computer user.

� Show the HTML code you receive to the class. Then turn over the paper and give the “displayed” page to the
computer user.

Cards 3-6 (make a card for root nameservers A, B, C, and D)

You are a root nameserver named A.

When asked for the IP address for a domain, see if the domain appears in the following list. If it does, reply with the
associated IP address. If it doesn’t (or if the asker gives you more than a simple domain – for example, if you are asked
for the IP address for www.ebay.com), reply “Error”.

� ebay.com – 66.135.215.5

� google.com – 216.239.32.10

� wikipedia.org – 208.80.152.130

http://www.ebay.com/�
http://www.google.com/�
http://www.wikipedia.org/�
http://www.wikipedia.org/�
http://www.wikipedia.org/�
http://www.wikipedia.org/�
http://www.facebook.com/�
http://www.ebay.com/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 50

Card 7

You are the nameserver at address 66.135.215.5. You handle requests for names at the domain ebay.com.

When asked for the IP address for a domain, see if the domain appears in the following list. If it does, reply with the
associated IP address. If it doesn’t, reply “Error”.

� data – 66.135.195.180

� mail – 91.194.248.3

� www – 66.135.200.145

Card 8

You are the nameserver at address 216.239.32.10. You handle requests for names at the domain google.com.

When asked for the IP address for a domain, see if the domain appears in the following list. If it does, reply with the
associated IP address. If it doesn’t, reply “Error”.

� images – 74.125.19.147

� mail – 74.125.19.18

� www – 74.125.19.104

Card 9

You are the nameserver at address 208.80.152.130. You handle requests for names at the domain wikipedia.org.

When asked for the IP address for a domain, see if the domain appears in the following list. If it does, reply with the
associated IP address. If it doesn’t, reply “Error”.

� mail – 208.80.152.133

� www – 208.80.152.2

Card 10

You are the webserver at address 66.135.200.145. You handle requests for web pages at the domain www.ebay.com.

http://www.ebay.com/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 51

If you are asked for the HTML code for the webpage www.ebay.com, hand the requester the paper with the HTML code
on it for www.ebay.com.

Card 11

You are the webserver at address 74.125.19.104. You handle requests for web pages at the domain www.google.com.

If you are asked for the HTML code for the webpage www.google.com, hand the requester the paper with the HTML
code on it for www.google.com.

Card 12

You are the webserver at address 208.80.152.2. You handle requests for web pages at the domain www.wikipedia.org.

If you are asked for the HTML code for the webpage www.wikipedia.org, hand the requester the paper with the HTML
code on it for www.wikipedia.org.

http://www.ebay.com/�
http://www.ebay.com/�
http://www.ebay.com/�
http://www.ebay.com/�
http://www.ebay.com/�
http://www.ebay.com/�
http://www.ebay.com/�
http://www.ebay.com/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 52

HTML for www.ebay.com

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css"
href="http://include.ebaystatic.com/v4css/en_US/e571/GlobalNavVjoOpt23_Ebay_e5716840866_en_US.css"><link rel="stylesheet" type="text/css"
href="http://include.ebaystatic.com/v4css/en_US/e569/CCHP_HomepageV4_SLDR_e5696758735_en_US.css"><style type="text/css">.coreFooterLinks {}

.coreFooterLegalNotice {}

.coreFooterVerisign {margin-bottom:0px; margin-left:125px; margin-right:25px; margin-top:10px}

.expressFooterLinks {padding-bottom:6px}

.expressFooterLegalNotice {padding-top:6px}

.expressFooterVerisign {margin-bottom:0px; margin-left:125px; margin-right:25px; margin-top:10px}

.ebayfooter a:active, .ebayfooter a:link, .ebayfooter a, .ebayfooter a:visited, .ebayfooter a:hover {color:inherit}

.cchprcp_container {margin-bottom:15px}

.hprcp_n {background-color:#fcd163}

.hprcp_head {background-color:#fcd163; height:24px; padding-left:15px; background:url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelBGYellowGrad1.gif) repeat bottom; border-left:1px solid #fcd163;
border-right:1px solid #fcd163; margin-top:-6px; border-top:1px solid #fcd163; padding-top:6px; border-bottom:1px solid #e1bf48}

.hprcp_n .hprcp_e, .hpmb_e {display:block; font-size:0px; margin:0px; line-height:0%; position:relative; height:6px}

.hprcp_n .hprcp_w, .hpmb_e {display:block; font-size:0px; margin:0px; line-height:0%; position:relative; height:6px}

.hprcp_s .hprcp_e, .gbhprcp_s .hprcp_e {display:block; font-size:0px; margin:0px; line-height:0%; position:relative; height:10px}

.hprcp_s .hprcp_w, .gbhprcp_s .hprcp_w {display:block; font-size:0px; margin:0px; line-height:0%; position:relative; height:10px}

.hprcp_n .hprcp_e {background:url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgHPHdrRgtYellow.gif) no-repeat top right; right:-1px}

.hprcp_n .hprcp_w {background:url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgHPHdrLftYellow.gif) no-repeat top left; left:-2px; width:6px}

.hprcp_s {background-color:transparent; border-color:#ccc; border-style:solid; border-width:0 1px 1px}

.gbhprcp_s {background-color:#e8e8e8; border-color:#ccc; border-style:solid; border-width:0 1px 1px}

.hprcp_s .hprcp_e {background:transparent url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLRGrey.gif) no-repeat scroll bottom right; bottom:-1px; right:-1px}

.hprcp_s .hprcp_w {background:transparent url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLLGrey.gif) no-repeat scroll bottom left; left:-2px; width:10px}

.gbhprcp_s .hprcp_e {background:transparent url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLRGreyGrad.gif) no-repeat scroll bottom right; bottom:-1px; right:-1px}

.gbhprcp_s .hprcp_w {background:transparent url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLLGreyGrad.gif) no-repeat scroll bottom left; left:-2px; width:10px}

.hprcp_mid {border-color:#ccc; border-style:solid; border-width:0 1px}

.hprcp_mide {width:auto}

.hprcp_head .mtitle {font-weight:bold; font-family:arial, helvetica, sans-serif; color:#5d5d5d}

#hpmebaag .body {width:100%}

#hpmebaag .title {height:30px; font-family:arial, helvetica, sans-serif; font-size:16pt}

.Subtitle {float:right; padding-right:15px}

.Subtitle a {color:#8df; text-decoration:none}

#hpFeaturedItems {width:615px}

#hpFeaturedItems .titleBar {height:30px; background-color:#fc0}

#hpFeaturedItems .titleBarLeft {background:transparent url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelULTrans.gif) no-repeat scroll top left; float:left; margin-left:0px; padding-left:15px}

http://www.ebay.com/�
http://www.w3.org/TR/html4/loose.dtd�
http://include.ebaystatic.com/v4css/en_US/e571/GlobalNavVjoOpt23_Ebay_e5716840866_en_US.css�
http://include.ebaystatic.com/v4css/en_US/e569/CCHP_HomepageV4_SLDR_e5696758735_en_US.css�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelBGYellowGrad1.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgHPHdrRgtYellow.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgHPHdrLftYellow.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLRGrey.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLLGrey.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLRGreyGrad.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelLLGreyGrad.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelULTrans.gif�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 53

#hpFeaturedItems .titleBarRight {background:transparent url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelURTrans.gif) no-repeat scroll top right; margin-right:0px; padding-right:15px}

#hpFeaturedItems .titleText {color:#5d5d5d; font-size:medium; font-family:Arial; font-weight:Bold; padding-top:5px}

#hpFeaturedItems .contentContainerText {padding:13px 15px 0 15px}

* html #hpFeaturedItems .contentContainerText {width:95%}

#hpFeaturedItems .contentContainerImg {padding:10px 15px 0 15px}

* html #hpFeaturedItems .contentContainerImg {width:95%}

#hpFeaturedItems .textViewLeft {padding:0px; margin:0px; float:left; width:284px; overflow:hidden}

#hpFeaturedItems .textViewRight {padding:0px; margin-left:15px; margin-top:0px; margin-bottom:0px; float:left; width:284px; overflow:hidden}

#hpFeaturedItems .textViewClear {clear:both; visibility:hidden; height:1px}

#hpFeaturedItems .textViewContent {color:#00f; font-size:small; font-family:Arial}

#hpFeaturedItems .textViewList {margin-left:15px; margin-top:0px; margin-bottom:0px; padding:0px; text-align:left}

#hpFeaturedItems .bottomBar {width:100%; text-align:right; height:15px; background:#f2f2f2 url(http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelBGGreyGrad.gif) repeat-x scroll bottom; border-top:1px solid
#dedede}

#hpFeaturedItems .footLinkContainer {padding:0px 15px 0pt 0pt; position:relative; bottom:-5px; z-index:1}

#hpFeaturedItems .footLinkContainer {color:#00c; font-size:small; font-family:Arial}

#hpFeaturedItems .imgViewItem {width:112px; float:left; font-size:small; font-family:Arial; color:#00f; overflow:hidden}

#hpFeaturedItems .imgViewItemSpace {padding-left:5px}

#hpFeaturedItems .imgContainer {height:64px; width:64px; border:1px solid #666; margin:0px; padding:0px; text-align:center; vertical-align:middle; overflow:hidden}

…and so on…

http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelURTrans.gif�
http://pics.ebaystatic.com/aw/pics/globalAssets/imgPanelBGGreyGrad.gif�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 54

Display for www.ebay.com

http://www.ebay.com/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 55

HTML for www.google.com

<html><head><meta http-equiv="content-type" content="text/html; charset=UTF-8"><title>Google</title><style>body,td,a,p,.h{font-family:arial,sans-serif}.h{font-size:20px}.h{color:#3366cc}.q{color:#00c}.ts
td{padding:0}.ts{border-collapse:collapse}.lnc:link,.lnc:visited{color:#00c}.pgtab,.pgtab:hover,.pgtabselected,.pgtabside{text-align:center;text-
decoration:none;color:#00c;display:block;height:27px;float:left;overflow:hidden;background:url(/intl/ja/images/productlinktabs.png) no-repeat;padding-top:8px}.pgtab{width:130px;background-position:-274px
0}.pgtab:hover{width:130px;background-position:-144px 0}.pgtabselected{width:144px}.pgtabside{width:3px;background-position:-404px
0}.iconl{overflow:hidden;height:px;width:px;position:relative}#gbar{float:left;height:22px;padding-left:2px}.gbh,.gb2 div{border-top:1px solid #c9d7f1;font-size:0;height:0}.gbh{position:absolute;top:24px;width:100%}.gb2
div{margin:5px}#gbi{background:#fff;border:1px solid;border-color:#c9d7f1 #36c #36c #a2bae7;font-size:13px;top:24px;z-index:1000}#guser{padding-bottom:7px !important}#gbar,#guser{font-size:13px;padding-top:1px
!important}@media all{.gb1,.gb3{height:22px;margin-right:.73em;vertical-align:top}.gb2 a,.gb2 b{display:block;padding:.2em .5em}}#gbi,.gb2{display:none;position:absolute;width:8em}.gb2{z-index:1001}#gbar
a{color:#00c}.gb2 a,.gb3 a{text-decoration:none}#gbar .gb2 a:hover{background:#36c;color:#fff;display:block}</style><script>window.google={kEI:"kLdySKnwA53qswPZ4vnlAg",kEXPI:"17259,17311,17735",kHL:"en"};

function sf(){document.f.q.focus()}

window.clk=function(b,c,d,e,f,g){if(document.images){var a=encodeURIComponent||escape;(new
Image).src="/url?sa=T"+(c?"&oi="+a(c):"")+(d?"&cad="+a(d):"")+"&ct="+a(e)+"&cd="+a(f)+(b?"&url="+a(b.replace(/#.*/,"")).replace(/\+/g,"%2B"):"")+"&ei=kLdySKnwA53qswPZ4vnlAg"+g}return true};

window.gbar={};(function(){var c=window.gbar,e,g,h;c.qs=function(a){var
d=window.encodeURIComponent&&(document.forms[0].q||"").value;if(d)a.href=a.href.replace(/([?&])q=[^&]*|$/,function(f,b){return(b||"&")+"q="+encodeURIComponent(d)})};function
l(a,d,f){a.display=h?"none":"block";a.left=d+"px";a.top=f+"px"}c.tg=function(a){var
d=0,f=0,b,m=0,n,j=window.navExtra,k,i=document;g=g||i.getElementById("gbar").getElementsByTagName("span");(a||window.event).cancelBubble=!m;if(!e){e=i.createElement(Array.every||window.createPopup?"ifram
e":"DIV");e.frameBorder="0";e.scrolling="no";e.src="#";g[7].parentNode.appendChild(e).id="gbi";if(j&&g[7])for(n in
j){k=i.createElement("span");k.appendChild(j[n]);g[7].parentNode.insertBefore(k,g[7]).className="gb2"}i.onclick=c.close}while(b=g[++m]){if(f){l(b.style,f+1,d+25);d+=b.firstChild.tagName=="DIV"?9:20}if(b.className=="gb
3"){do f+=b.offsetLeft;while(b=b.offsetParent)}}e.style.height=d+"px";l(e.style,f,24);h=!h};c.close=function(a){h&&c.tg(a)}})();</script></head><body bgcolor=#ffffff text=#000000 link=#0000cc vlink=#551a8b alink=#ff0000
onload="sf();if(document.images){new Image().src='/images/nav_logo3.png'}" topmargin=3 marginheight=3><div id=gbar><nobr>Web Images Maps <span
class=gb1>News <a href="http://www.google.com/prdhp?hl=en&tab=wf"
onclick=gbar.qs(this)>Shopping Gmail <a href="http://www.google.com/intl/en/options/"
onclick="this.blur();gbar.tg(event);return !1"><u>more</u> <small>▼</small> Video <span
class=gb2>Groups <a href="http://books.google.com/bkshp?hl=en&tab=wp"
onclick=gbar.qs(this)>Books Scholar Finance Blogs
<div></div> YouTube Calendar Photos <span
class=gb2>Documents Reader Sites <div></div> even more »
</nobr></div><div class=gbh style=left:0></div><div class=gbh style=right:0></div><div align=right id=guser style="font-size:84%;padding:0 0 4px" width=100%><nobr>iGoogle | Sign in</nobr></div><center><br clear=all id=lgpd><img
src=/logos/chagall.gif width=276 height=125 border=0 alt="Happy Birthday, Marc Chagall! Chagall images are copyrighted and used with permission." title="Happy Birthday, Marc Chagall! Chagall images are copyrighted
and used with permission.">

<form action="/search" name=f><table cellpadding=0 cellspacing=0><tr valign=top><td width=25%> </td><td align=center nowrap><input name=hl type=hidden
value=en><input maxlength=2048 name=q size=55 title="Google Search" value="">
<input name=btnG type=submit value="Google Search"><input name=btnI type=submit value="I'm Feeling Lucky"></td><td nowrap
width=25%> Advanced Search
 Preferences
 Language Tools</td></tr></table></form>

Advertising Programs - Business Solutions - About Google<p>©2008 - Privacy</p></center></body></html>

http://www.google.com/�
http://images.google.com/imghp?hl=en&tab=wi�
http://maps.google.com/maps?hl=en&tab=wl�
http://news.google.com/nwshp?hl=en&tab=wn�
http://www.google.com/prdhp?hl=en&tab=wf�
http://mail.google.com/mail/?hl=en&tab=wm�
http://www.google.com/intl/en/options/�
http://video.google.com/?hl=en&tab=wv�
http://groups.google.com/grphp?hl=en&tab=wg�
http://books.google.com/bkshp?hl=en&tab=wp�
http://scholar.google.com/schhp?hl=en&tab=ws�
http://finance.google.com/finance?hl=en&tab=we�
http://blogsearch.google.com/?hl=en&tab=wb�
http://www.youtube.com/?hl=en&tab=w1�
http://www.google.com/calendar/render?hl=en&tab=wc�
http://picasaweb.google.com/home?hl=en&tab=wq�
http://docs.google.com/?hl=en&tab=wo�
http://www.google.com/reader/view/?hl=en&tab=wy�
http://sites.google.com/?hl=en&tab=w3�
http://www.google.com/intl/en/options/�
http://www.google.com/ig%3Fhl%3Den%26source%3Diglk&usg=AFQjCNFA18XPfgb7dKnXfKz7x7g1GDH1tg�
https://www.google.com/accounts/Login?continue=http://www.google.com/webhp%3Fhl%3Den&hl=en�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 56

Display for www.google.com

http://www.google.com/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 57

HTML for www.wikipedia.org

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- Sysops: Please do not edit the main template directly; update /temp and synchronise. -->

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="mul" lang="mul" dir="ltr">

<head>

<title>Wikipedia</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link rel="shortcut icon" href="http://en.wikipedia.org/favicon.ico" />

<link rel="apple-touch-icon" href="http://en.wikipedia.org/apple-touch-icon.png" />

<link rel="copyright" href="http://www.gnu.org/copyleft/fdl.html" />

<style type="text/css" media="screen, projection">/*<![CDATA[*/ @import "http://en.wikipedia.org/skins-1.5/monobook/main.css"; /*]]>*/</style>

<link rel="stylesheet" type="text/css" media="print" href="http://en.wikipedia.org/skins-1.5/common/commonPrint.css" />

<!--[if lt IE 5.5000]><style type="text/css">@import "http://en.wikipedia.org/skins-1.5/monobook/IE50Fixes.css";</style><![endif]-->

<!--[if IE 5.5000]><style type="text/css">@import "http://en.wikipedia.org/skins-1.5/monobook/IE55Fixes.css";</style><![endif]-->

<!--[if IE 6]><style type="text/css">@import "http://en.wikipedia.org/skins-1.5/monobook/IE60Fixes.css";</style><![endif]-->

<!--[if IE 7]><style type="text/css">@import "http://en.wikipedia.org/skins-1.5/monobook/IE70Fixes.css";</style><![endif]-->

<!--[if lt IE 7]><meta http-equiv="imagetoolbar" content="no" /><![endif]-->

<script type="text/javascript">

 function focusSearchBox() {

 document.getElementById("searchInput").focus();

 }

 function addLoadEvent(fn) {

 if (window.addEventListener) window.addEventListener("load", fn, false);

 else if (window.attachEvent) window.attachEvent("onload", fn);

 }

 addLoadEvent(focusSearchBox);

</script>

</head>

<body style="background: #fff;">

<div id="globalWrapper">

<div id="column-content">

http://www.wikipedia.org/�
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd�
http://www.w3.org/1999/xhtml�
http://en.wikipedia.org/favicon.ico�
http://en.wikipedia.org/apple-touch-icon.png�
http://www.gnu.org/copyleft/fdl.html�
http://en.wikipedia.org/skins-1.5/monobook/main.css�
http://en.wikipedia.org/skins-1.5/common/commonPrint.css�
http://en.wikipedia.org/skins-1.5/monobook/IE50Fixes.css�
http://en.wikipedia.org/skins-1.5/monobook/IE55Fixes.css�
http://en.wikipedia.org/skins-1.5/monobook/IE60Fixes.css�
http://en.wikipedia.org/skins-1.5/monobook/IE70Fixes.css�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 58

<div id="bodyContent">

<div class="plainlinks">

<!-- image of text at the top -->

<div style="margin: 1em 0 0.3em 0; text-align: center; font-size: 30px; line-height: 110%; font-family: 'Hoefler Text', 'Times New Roman', 'Times New Roman', Times, serif;" class="plainlinks">

</div>

<!-- container div for the central logo and the links to the largest language editions -->

<div style="text-align: center; vertical-align: middle; max-width: 100%; width: 42em; margin: 0 auto 0 auto; height: 26em; position: relative;">

<!-- the central logo -->

<div style="position: absolute; left: 50%; top: 50%; width: 0; height: 0;">

<div style="position: relative; left: -100px; top: -100px; width: 200px; height: 200px;">

</div>

</div>

<!-- #1 -->

<div style="position: absolute; top: 0%; right: 60%; background: #fff;" lang="en" xml:lang="en">

<big>English</big>

The Free Encyclopedia

<small>2 443 000+ articles</small></div>

…and so on…

http://upload.wikimedia.org/wikipedia/meta/thumb/7/7c/Wikipedia-word.png/174px-Wikipedia-word.png�
http://upload.wikimedia.org/wikipedia/meta/2/2a/Nohat-logo-nowords-bgwhite-200px.jpg�
http://en.wikipedia.org/wiki/Main_Page�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 7 Page 59

Display for

www.wikipedia.org

http://www.wikipedia.org/�

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 10 Page 60

Website Evaluation Rubric

Authority

Is the author identified? Yes No Unsure

Does the author have appropriate qualifications with respect to the
information being presented?

Yes No Unsure

Purpose

Is the purpose to inform or give factual information? Yes No Unsure

Coverage

Is the information primary or secondary in nature? Yes No Unsure

Is the information presented comparable to information on the
same topic presented by other sites?

Yes No Unsure

Accuracy

Is the information free of factual errors? Yes No Unsure

Do the conclusions appear to be well-reasoned and supported by the
facts presented?

Yes No Unsure

Is the information properly referenced? Yes No Unsure

Objectivity

Is the information free from obvious bias? Yes No Unsure

Does the author avoid the use of emotional or inflammatory
language?

Yes No Unsure

Does the author avoid trying to sell something or persuade the
reader of a particular viewpoint?

Yes No Unsure

Currency

Is the information up-to-date? Yes No Unsure

Are there creation and revision dates? Yes No Unsure

Appearance

Does the site have a professional appearance? Yes No Unsure

Does it use proper grammar, spelling, and composition? Yes No Unsure

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 10 Page 61

Following Directions Quiz

Directions: You have a 5 minute time limit to complete the parts of this test. Carefully read all of the parts of
the test before doing anything. In order to ensure the accuracy of this exam, you should not use more than
the allotted time of 5 minutes. Good Luck!!

You may begin now!!

1. Write today's date--month-day-year in the top right hand corner of your test paper.

2. Write the answer to the following multiplication problem directly underneath the date on your test paper--6
X 5 = ?

3. Write the name of the month that begins with the letter "D" in the top left hand corner of your test paper.

4. Add 15 to the answer you got in part #2, and write this new total directly underneath your answer for part
#3.

5. In the lower left hand corner of your test paper, write the names of your favorite singer and your favorite
group.

6. Just above your answer to part #5, write "This test is very easy."

7. In the lower right hand corner of your test paper, draw a rectangle and inside the rectangle draw a five
pointed star. The size of these drawings is not important.

8. Directly above your answer to part #7, draw a row of three small circles. Once again, size is not important.

9. Write the name of the first president of the United States on the back of your test paper anywhere you
choose. If you don't know who this is, write your own name instead.

10. Write the name of any country that begins with the letter "I" directly underneath you answer to part #2.

11. Stand up, shout “hooray!”, and sit down.

12. Take the number of dwarfs in the Snow White story and add it to the number of bears in the Goldilocks
story. Divide by 2. Write this total in the approximate center of your test paper.

13. Think of a number between 1 and 50. Double that number. Add 20. Add 6. Subtract 17. Subtract 9. Divide
by 2. Write this number on your test paper directly underneath your answer to part #11.

14. Now that you have carefully read all of the parts so far, and you have not carried out any of the actual work,
skip the next 2 parts and go back and only complete part #3.

15. The name of the first president of the United States is George Washington. He was president from 1789 until
1797. Add the 2 dates together to see if the total is less than 5000.

16. You should not be reading the end of the exam before the beginning of the exam, but now that you are
here, you have just wasted some of the time you may need to complete the test.

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 10 Page 62

Drawing Pictures Activity

1. Draw a picture of a house in the middle of the page.

2. Draw a picture of a stick figure father, mother and daughter.

3. Draw a picture of a mustang next to the house.

4. Draw a picture of the sun in the sky.

 Version 2.0

Exploring Computer Science—Unit 1: Activity Day 12 Page 63

Computer Intelligence Activity

Part I

A program passes The Turing Test (en.wikipedia.org/wiki/Turing_Test) if a person can have a conversation with
both it and a person and not be able to tell which one is the computer.

Try each of these chatterbots with the questions you were assigned.

1. Try to chat with Eliza (ai.ijs.si/eliza/eliza.htm). How realistic is she? Would she pass the Turing Test?
2. Try to chat with Athena (Athena.blueinfos.com). How realistic is she? Would she pass the Turing Test?
3. Try to chat with Friend4U (virtualentities.com/friend4u). How realistic is she? Would she pass the

Turing Test?
4. Try to chat with InteliAvatar (inteliwise.com). How realistic is she? Would she pass the Turing Test?
5. Which of the above chatterbots was the most like a real person?
6. What is the Chatterbox Challenge (chatterboxchallenge.com)?

Part II

1. Click this link: 20q.net (20q.net). Choose your language (Think in American is recommended). Choose
one of the games from the bottom that was assigned to your group. You are supposed to think of
something in that category and answer the computer’s questions by clicking them. The computer will
try to guess what you chose in 20 questions or less. Play the game several times:

• Pick an item and see how many questions are required.
• Choose the same item and see if you can make it require more questions
• Repeat this with another item.
• How intelligent is this? Would this pass the Turing Test?

 Play the second game you were assigned and repeat the process above.

2. The Turing test is a person checking to see if it is talking to a computer. Can you think of any occasions
that a computer might want to know if it is talking to another computer or a real life person?

http://en.wikipedia.org/wiki/Turing_test�
http://www-ai.ijs.si/eliza/eliza.html�
http://www.athena.blueinfos.com/�
http://www.virtualentities.com/friend4u�
http://www.inteliwise.com/�
http://www.chatterboxchallenge.com/index.php�
http://www.20q.net/�

 Version 2.0

Exploring Computer Science—Unit 1: Final Project Page 64

Final Project

You will be given a scenario for someone that wants to buy a new computer. Your task is to give them at least 4
options and then give them advice on which one to buy. Your project will be presented to the class.

The final product can be a:

• Powerpoint
• Skit
• Video
• Poster
• Other approved product

Your final product should have:

• A title with group members’ names
• The scenario that you are given
• Computer comparison chart
• Which computer is chosen
• Justification for choosing that computer

Example computer comparison chart (more information can be added):

 Dell Inspiron 530s Macbook
Laptop or Desktop
Processor (CPU)
Operating System
Memory (RAM)
Hard Drive (storage)
Optical Drive
Monitor or Screen Size
Video Card
Sound Card
Other Accessories
Cost

Student Grouping:
 You will be in a group of up to 4 students.

 Version 2.0

Exploring Computer Science—Unit 1: Final Project Scenarios Page 65

Sample Scenarios for Final Project

Scenario #1

I play lots of games. I play them in my room so I can have the tv on while I play. Whenever a new game comes
out, I buy it. I need the games to run as fast as possible with the best graphics and sound. My parent’s are
buying the computer so I don’t care how much it costs.

Scenario #2

I take the bus to work everyday. I need a computer that I can use on the bus. I make financial reports and
charts using Powerpoint and Excel. My budget is $1500.

Scenario #3

I am a writer. I need to write books wherever inspiration hits me. Sometimes I write at the beach. Other than
that, I use the computer for the internet sometimes. I haven’t sold a book yet, so I only have about $900 to
spend on a computer.

Scenario #4

I am dad that takes lots of videos of my kids. I want to be able to save them on my hard drive. I also want
professional software that will help me edit the videos. I want to be edit the movies quickly and make dvds for
my entire family. My budget is $3000.

Scenario #5

I am teacher that needs a computer that I can use at home and take to work. I’ve used a lot of Apples in the
past and like the fact that they are really easy to use. I only need basic office software. My budget is $1500.

Scenario #6

I collect music from all kinds of bands. I need a computer that can store all the music and videos I have of my
favorite bands. I only want to use my computer at home. Other than that I just surf the internet. My budget is
$1000.

Scenario #7

I am a graphic designer. I use Adobe Photoshop and Illustrator. I need a computer that can allow me to quickly
edit large pictures. My budget is $2000. I only work at home.

 Version 2.0

Exploring Computer Science—Unit 1: Final Project Suggested Rubric Page 66

Final Project Suggested Rubric

Group Members Names: (up to 4)

_______________________ _______________________

 _______________________ _______________________

Do you have? Points Possible Yes No Points Earned

Product

Title with group members’ names 10

Scenario is described 10

Computer comparison chart with at least 4 options 5

Chart has specifications of options 5

Options on chart fit your scenario 10

Show justification for your computer choice 10

Your choice fits the scenario 10

Visuals of your choices (pictures or video of choices) 10

Presentation

Present your project 15

Present all required parts of project 15

Extra Credit

Project exhibits creativity above and beyond Up to 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 67

Unit 2:

Human Computer Interaction

© Computer Science Equity Alliance, 2009

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 68

Daily Overview Chart

Instructional Day Topic

1 Introduce the four steps of the problem solving process.

2-4 Apply the problem solving process. Use different strategies to plan and
carry out the plan to solve several problems.

5-7 Reinforce the four steps of the problems solving process. In particular,
the strategy of finding a problem similar to one that has already been
solved is explored.

8-9 Count in the binary number system.

10-12 Convert between binary and decimal numbers in the context of topics that
are important to computer science.

13-14 Discuss encryption and its role in keeping information private.

15-17 Explore sorted and unsorted lists and various sorting algorithms.

18-19 Introduce the linear and binary search algorithms.

20-21 Introduce minimal spanning trees and how graphs can be used to help
solve problems.

22-25 Students complete final projects.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 69

Daily Lesson Plans

Instructional Day: 1

Topic Description:

This lesson introduces the four main phases of the problem-solving process as defined by G. Polya in
How to Solve It.

Objectives:

The students will be able to:

• Name and explain the steps in the problem-solving process.
• Solve a problem by applying the problem-solving process.

Outline of the Lesson:

• Journal Entry (5 minutes)
• Candy Bar Activity (25 minutes)
• Discussion of solutions (10 minutes)
• Introduction of the steps in the problem-solving process (15 minutes)

Student Activities:

• Complete journal entry.
• In groups, participate in the candy bar activity.
• Participate in discussion of solutions.
• Reflect on the candy bar activity as it relates to the problem-solving process.

Teaching/Learning Strategies:

• Journal Entry: “What are the steps you use to solve a problem?”
• Candy Bar Activity

o Divide the students into groups of 2 or 3. Give each group a candy bar.
o Explain that their task is to determine how many "breaks" it will take to break the candy

bar into 12 equal pieces. One break of one piece of the candy bar will result in that one
piece being divided into two pieces. Demonstrate a "break" by breaking the bar into
two pieces. Then stack the two pieces together and break or cut the two pieces into
four.

o At this point, have each student write in their journal the number of breaks they think it
will take to break the bar into 12 equal pieces. This should be done without talking to
their partner or group members.

o Working together with their partner or group, have the students discuss and then write
their plan for solving the problem. They may revise their guess at this point.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 70

o Once this is done, the students should implement the plan by opening the candy and
breaking the candy and counting the number of breaks it takes to get 12 equal pieces.

• Discussion of solutions
o Choose a group to present their plan to the class.
o How do the steps they used match what they wrote in their journal?

• Introduction to the steps in the problem-solving process
o How do the steps they used relate to the “formal” steps of the problem solving process?

 Understand the problem – read or listen to the problem statement.
 Make a plan to solve the problem – use pictures, charts, graphs, systematic lists,

objects, or act out the solution to help you devise a plan to solve the problem
• In Computer Science we call this plan an algorithm.

 Carry out the plan – once the plan is conceived and understood, follow the plan.
If you have planned well, this is the easy part.

 Review and reflect on how the problem was solved – Once the problem is
solved, reflect on the plan that was used.

• Extend breaking the candy into N pieces
o Post chart of # pieces/# of breaks, including N and have students give you the # of

breaks needed for each number of pieces.
• Reflections on the candy bar problem: Ask the students to reflect on the candy bar problem.

Why is this problem an important problem to solve for: a carpenter, a chef, a teacher?

Resources:

• Polya, G. How to Solve It. 2nd. Princeton, NJ: Princeton University Press, 2004.
 candy bar problem suggested by Dr. Manuel Blum, Carnegie Mellon University.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 71

Instructional Days: 2-4

Topic Description:

Students will apply different strategies to help them make a plan and carry out the plan to solve several
problems. These strategies may include (but are not limited to): draw a diagram or picture, make
systematic lists, divide and conquer, find the pattern, and guess and check.

Objectives:

The students will be able to:

• Solve a problem by applying the problem-solving process.
• Express a solution using standard design tools.
• Determine if a given solution successfully solves a stated problem.

Outline of the Lesson:

• Handshake problem #1 and Fence Post problem (20 minutes)
• Explanation of solutions (15 minutes)
• Handshake problem #2 and reflections (75 minutes)
• Presentations of Handshake problem (40 minutes)
• Discussion of reflections (15 minutes)

Student Activities:

• Work individually on Handshake problem #1 and the Fence Post problem.
• Volunteers present solutions to problems.
• Work in groups to complete Handshake problem #2.
• Groups give presentations of their problem solutions.
• Discuss reflections on the process.

Teaching/Learning Strategies:

• Handshake problem #1 and Fence Post problem
o Students work individually on Handshake problem #1 and the Fence Post problem.

• Explanation of solutions
o Have some students volunteer their solutions to the problems.
o Reinforce each step of the problem-solving process.

• Handshake problem #2 and Reflections
o In groups of 3 or 4, have students discuss, plan, execute, and reflect on Handshake

problem #2. Students should follow the directions given in the activity document and
write their group’s thoughts on paper.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 72

o Encourage students to make drawings or charts – act out the solution. Chart paper can
be given to students to display pictures, charts, or graphs. Their job is to explain the
process and the solution so that everyone understands.

• Student Presentations
o Each group should be given about 5-10 minutes (depending on the size of the class) to

present their plan and solution to the class. Be sure the students show all 4 steps in the
problem-solving process.

• Discussion of reflections

Resources:

• Polya, G. How to Solve It. 2nd. Princeton, NJ: Princeton University Press, 2004.

• Handshake and Fencepost Activity

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 73

Instructional Days: 5-7

Topic Description:

This lesson reinforces the four main phases in the problem-solving process. In particular, the strategy of
finding a problem similar to one that has already been solved is explored.

Objectives:

The students will be able to:

• Name and explain the steps in the problem-solving process.
• Solve a problem by applying the problem-solving process.
• Express a solution using standard design tools.
• Determine if a given solution successfully solves a stated problem.

Outline of the Lesson:

• Summing the first 100 consecutive integers (15 minutes)
• Summing consecutive integers (25 minutes)
• Group discussion on summing consecutive integers (15 minutes)
• Scheduling Youth Soccer League games (95 minutes)
• Gallery walk (15 minutes)

Student Activities:

• Work individually to find the sum of the first 100 integers.
• Work in groups to find the sum of the first n integers.
• Provide solutions during the group discussion.
• Work in groups to create a schedule for Youth Soccer League games
• Participate in gallery walk.

Teaching/Learning Strategies:

• Summing the first 100 consecutive integers
o Provide a prize for the first person who completes the sum with the correct answer.
o Ask students to share their solution strategies; are there shortcuts?

• Summing n consecutive integers
o Divide students into groups of 3-4 and ask them to find the sum of the first n integers.
o Remind students to use the problem solving process and look for patterns.

• Group discussion on summing consecutive integers
o Reinforce each step of the problem-solving process.
o Be sure that the students really understand the generalized formula for summing the

integers from 1 to N or 1 to N – 1.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 74

o Reinforce the strategy of finding a similar problem that has already been solved to help
solve the new problem.

• Scheduling Youth Soccer League games
o Divide the students into groups of 3 or 4 and provide them with the instructions for the

Youth Soccer League Activity.
o Give each group a beginning Saturday date for the first soccer games to occur and have

students follow the directions in the activity.
• Gallery walk of posters

o Students share their solutions.

Resources:

• Youth Soccer League Activity

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 75

Instructional Days: 8-9

Topic Description: This lesson introduces the binary number system and how to count in binary.

Objectives:

The students will be able to:

• Count forward and backward in binary.

Outline of the Lesson:

• Journal Entry (5 minutes)
• CS Unplugged Activity: Count the Dots and counting in binary (50 minutes)
• CS Unplugged Activity: Count the Dots and the binary number system (50 minutes)
• Revisit journal entry (5 minutes)

Student Activities:

• Complete journal entry.
• Participate in the Count the Dots activities
• Revisit journal entry

Teaching/Learning Strategies:

• Journal Entry: How high can you count with your ten fingers?
• Use the CS Unplugged: Count the Dots activity to introduce binary representation and counting

in binary.
o Have students follow the directions on pp.12-13 of the activity. (The activity can be

downloaded from http://csunplugged.com/index)
o Have 5 students come to the front of the room and try counting as you call out the

numbers. (Each student should receive a large card with one of the numbers of dots---
1, 2, 4, 8, 16)

• Use the CS Unplugged: Count the Dots activity to explain the binary number system and have
the students practice counting forward and backward.

o Complete #6 on p 14.
o Have different groups of 5 students at a time come to the front and complete #7 parts

one and two on p.14.
• Revisit Journal Entry.

Resources:

• Bell, Tim, Ian Witten and Mike Fellows. Computer Science Unplugged. Canterbury, New Zealand:
2002.

http://csunplugged.com/index�

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 76

Instructional Days: 10-12

Topic Description: Students will learn how to convert between binary and decimal numbers in the
context of topics that are important to computer science.

Objectives:

The students will be able to:

• Explain why binary and numbers are important in computer science.
• Use binary digits to encode and decode messages.
• Use binary digits to create binary art.

Outline of the Lesson:

• Journal Entry (5 minutes)
• Discussion of why are binary numbers important in computer science (15 minutes)
• Binary weaving activity (35 minutes)
• Webquest: What is SETI? (10 minutes)
• First 3 minutes of the video "The Primes" (10 minutes)
• Explanation of binary art project (10 minutes)
• Binary art project (65 minutes)
• Gallery walk and presentations of binary art projects (15 minutes)

Student Activities:

• Complete journal entry.
• Participate in a discussion of why binary and hexadecimal numbers are important in computer

science.
• Complete Binary Weaving activity.
• Complete Webquest: What is SETI?
• View the first three minutes of the video “The Primes”.
• Work on binary art project.
• Participate in a gallery walk and presentations of binary art projects.

Teaching/Learning Strategies:

• Journal Entry: Decode the message at the bottom of p. 18 of the CS Unplugged: Count the Dots
activity.

• Discussion of why binary numbers are important in computer science
o CS Unplugged: Count the Dots activity p. 16 is a good summary.

• Binary weaving activity
o Distribute materials, including the Ascii alphabet (can be downloaded from

http://www.raft.net).
o Have students choose one bead color to represent 0 and another color to represent 1.

http://www.raft.net/�

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 77

o Ask students to encode a secret message in binary using beads. This could be done as a
Native American-style band eight beads wide or a very long string of single beads.

o Have students trade their bead strings with their elbow partners and decode.
• Webquest: What is SETI?

o Have students work with their elbow partners and do a web search to answer the
question: What is SETI and what does it do?

• Video “The Primes”
o View the first 3 minutes from the video "The Primes" that explains how Frank Drake

sent 1679 bits of information into space in the search of intelligent life.
o The video can be found at:

http://www.learner.org/resources/series210.html?pop=yes&pid=2283
o You will need to sign up for a free account at http://www.learner.org first.
o If you cannot view and display the video, the book that goes with the video explains the

transmission. It can be found at:
http://www.learner.org/channel/courses/mathilluminated/units/1/textbook/01.phpExp
lain conversions among binary, decimal and hexadecimal numbers.

• Explanation of binary art project
o Distribute the instructions for the binary art project.
o Use the project included in the supplemental materials (Students should create art that

represents something about them using 0's and 1's or white (0) and black (1) or some
other 2 color system.) or create your own project for them to do.

• Binary art project
o Allow students time to work on their projects

• Gallery walk and student presentations of projects
o Depending on what project you end up assigning, you may want to ask for a few

volunteers to describe their formulas and/or have other students try to determine the
formulas.

Resources:

• Bell, Tim, Ian Witten and Mike Fellows. Computer Science Unplugged. Canterbury, New Zealand:
2002.

• http://www.raft.net (Weaving activity)

• Weaving board

• Beads of two colors

• String or cord

• Ascii alphabet

• Binary Art Project

http://www.learner.org/resources/series210.html?pop=yes&pid=2283�
http://www.learner.org/�
http://www.learner.org/channel/courses/mathilluminated/units/1/textbook/01.php�
http://www.raft.net/�

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 78

Instructional Days: 13-14

Topic Description: This lesson reviews encryption and its use in keeping information private.

Objectives:

The students will be able to:

• Define encryption.
• Discuss how encryption is used to keep information private.
• List types of information that should be encrypted and state why.

Outline of the Lesson:

• Internet research to define encryption (35 minutes)
• Discussion of the need for encryption and types of information that should be encrypted or

protected (20 minutes)
• Message encryption and decryption (55 minutes)

Student Activities:

• Work in pairs or groups to do an Internet search to define encryption.
• Participate in a discussion of the need for encryption and the types of information that should

be protected.
• Create and decode messages using an encryption key.

Teaching/Learning Strategies:

• Internet research to define encryption
o Have students do a quick internet search to define encryption, especially as it relates to

keeping information private on the computer.
o They can work in pairs or groups and should write down their findings.
o Have students list types of information that should be encrypted or protected

• Discussion with the students about different types of information that should have limited
access.

• Message encryption and decryption
o Provide a few examples of encryption keys.
o Have each student create an encryption key.
o Randomly distribute the keys that were created to each student.
o Students create a message with the designated key.
o Give the message to another student to decrypt without the key.

Resources:

• http://www.hermetic.ch/crypto/intro.htm
• http://computer.howstuffworks.com/encryption.htm

http://www.hermetic.ch/crypto/intro.htm�
http://computer.howstuffworks.com/encryption.htm�

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 79

Instructional Days: 15-17

Topic Description: In this lesson the concept of a list (sorted and unsorted and sorting algorithms will be
explored.

Objectives:

The students will be able to:

• Define sorted and unsorted lists.
• Describe various sorting algorithms.
• Compare various sorting algorithms.

Outline of the Lesson:

• Journal Entry (15 minutes)
• CS Unplugged : Lightest and Heaviest activity to explore sorting (40 minutes)
• CS Unplugged : Lightest and Heaviest activity to discover and describe sorting algorithms (55

minutes)
• CS Unplugged : Lightest and Heaviest activity to compare sorting algorithms (55 minutes)

Student Activities:

• Complete journal entry.
• Groups participate in the various parts of the CS Unplugged : Lightest and Heaviest activity.

Teaching/Learning Strategies:

• Journal Entry: List examples of where it matters whether items are in order (sorted).
o Have volunteers provide examples from their lists and explain why it matters that they

are sorted; in other words, what are the consequences if the list is not sorted?
• CS Unplugged : Lightest and Heaviest activity

o Divide students into groups of 3-4 and give each group a set of weights and a balance
scale as described on p. 74 of the activity, #2.

o Have students complete #3 on p. 75. And then discuss as indicated in #4.
o Have students complete #5 and #6 on p. 75
o At this point in the activity, students should present their findings to the class and

discuss.
o Have students complete #7-#10 on pp. 75-77. Throughout, guide students as necessary

and have them keep track of the processes they use.
• If time permits, have students try both sorting methods to sort cards that have 50 random

numbers on them and analyze the number of comparisons required for each.

Resources:

• Bell, Tim, Ian Witten and Mike Fellows. Computer Science Unplugged., New Zealand: 2002.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 80

Instructional Days: 18-19

Topic Description: This lesson introduces the Linear and Binary Search algorithms.

Objectives:

The students will be able to:

• Describe the linear search algorithm.
• Describe the binary search algorithm.

Outline of the Lesson:

• Tower Building Activity (55 minutes)
• Model tower building algorithm (20 minutes)
• Model binary search (15 minutes)
• Comparison of linear and binary search (15 minutes)

Student Activities:

• In pairs complete the Tower Building Activity.
• Model the tower building algorithm
• Students participate in the activity modeling binary search

Teaching/Learning Strategies:

• Tower Building Activity
o Have students complete the Tower Building Activity with their elbow partner and write

their solutions in their journals.
• Model tower building activity.

o Have students share their solutions with another elbow partner pair.
o Have one set of students use 10 legos to model the algorithm for solving the problem in

front of the entire class.
• Model binary search

o Use 2 copies of the same dictionary. Hand one dictionary to 2 students and have them
pick out a work in the dictionary.

o Choose 2 other students to count the number of times you choose a word from the
dictionary to search for the students' word.

o Discuss the number of guesses required and how this is similar to the tower building
problem.

• Comparison of linear and binary search.
o Linear – start at the beginning, look at each item until you find it or no more data. Data

can be sorted or not.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 81

o Binary – requires sorted data. Look at middle item, eliminate the half where the value is
not located. Find the new middle element and continue process until you find it, or no
more data.

o Have students provide examples of where each is appropriate and why.

Resources:

• Shasha, Dennis. The Puzzling Adventures ofDoctor Ecco. Mineola, New York: Dover Publications,
Inc., 1998.

• Tower Building Activity

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 82

Instructional Day: 20-21

Topic Description: Minimal spanning trees and graphs will be explored. Students will learn how graphs
can be used to help solve problems.

Objectives:

The students will be able to:

• Solve a minimal spanning tree.
• Draw a graph to solve a problem.

Outline of the Lesson:

• CS Unplugged: The muddy city activity (55 minutes)
• CS Unplugged: The muddy city activity extension (55 minutes)

Student Activities:

• Participate in the various parts of the CS Unplugged: The muddy city activity.
• Participate in the various parts of the CS Unplugged: The muddy city activity extension.

Teaching/Learning Strategies:

• CS Unplugged: The muddy city activity
o Follow the directions in the activity on pages 91-93.
o Have students work with their elbow partners.

• CS Unplugged: The muddy city activity extension
o Have students repeat the muddy city problem with the abstract representation in Figure

9.2 on p. 93 of the activity.
o Discuss various applications of this problem in anticipation of the final project.

Resources:

• Bell, Tim, Ian Witten and Mike Fellows. Computer Science Unplugged. Canterbury, New Zealand:
2002.

 Version 2.0

Exploring Computer Science—Unit 2: Problem Solving Page 83

Instructional Days: 22-25

Topic Description: Students work on final unit project.

Objectives:

The students will be able to:

• Incorporate all unit objectives into the final project.

Outline of the Lesson:

• Explanation of final project (15 minutes)
• Completion of final projects (150 minutes)
• Presentations of final projects (55 minutes)

Student Activities:

• Groups work on final projects.

• Groups present final projects.

Teaching/Learning Strategies:

• Explanation of final project
o Distribute final project explanation.
o Note: You may wish to modify the scenario of the problem to address student interests

and abilities.
o Divide students into groups of 3-4 and distribute a list of 10 US cities to each group.

• Completion of final projects
o Monitor student work, answering questions as necessary.

• Presentations of final projects
o Have each group present the information in their final project.

Resources:

• Road atlases

• Problem Solving Final Project (This project is adapted from MathmaniaCS Lesson 13
(http://www.mathmaniacs.org/lessons)

• Problem Solving Final Project Suggested Rubric

http://www.mathmaniacs.org/lessons�

 Version 2.0

Exploring Computer Science—Unit 2: Activity Day 2 Page 84

Activities

Handshake and Fencepost Activity

For each problem, complete the following information.

Understanding the problem:
 What data or information is known?
 What is unknown?
 What are the conditions?

Plan the solution: Show your plan for solving this problem.

Carry out the plan: Using your plan, show your work and your solution.

Review and discuss your solution: Reflect on your solution.

Complete problems #1 and #2 individually.

1. Handshake Problem #1: Assume there are 20 people in a room, including you. You must shake
hands with everyone else in the room. How many hands will you shake? If there are N (where
N > 0) people in the room, how many hands will you shake?

2. Fence Post Problem: You need to build one side of a fence that is 12 yards long. This fence will
be built with fence posts and rails that connect one fence post to another. If each fence post is
1 yard away from the next fence post, how many fence posts will be needed for this side of the
fence? How many fence posts will be needed for a side of a fence that is N (where N > 0) yards
long?

Read and begin planning your solution for problem s #3 and #4. These problems will be
completed in class tomorrow with your group. Each group will present their solutions to the class.

3. Handshake Problem #2: Assume there are 10 people in a room, including you. Each person in

the room must shake hands one time, and only time, with all the other people in the room.
How many handshakes will occur? If there are 20 people in the room, how many handshakes
will occur? If there are N (where N > 0) people in the room, how many handshakes will occur?

4. Reflections: Why are problems like these important to learn how to solve? How could this type
of solution be of benefit to a carpenter, a chef, a teacher?

 Version 2.0

Exploring Computer Science—Unit 2: Activity Day 5 Page 85

Youth Soccer League Activity

The Youth Soccer League has 6 teams:

 Jaguars, Bears, Coyotes, Stallions, Eagles, Sharks

Each team must play each other team two times in a season. Games will be scheduled on Saturdays.
Each team will play a game on every Saturday until the season is completed. Develop a schedule of
games for the season. Enter the schedule into a calendar or spreadsheet on the computer. Create a
poster with the schedule and your explanation for how you developed the schedule. Then answer the
following questions.

1. How many games will the Jaguars play for the season? Justify your answer.

2. How many games will be played on each Saturday? Justify your answer.

3. How many games total will be played for the league? Justify your answer.

4. How many weeks long is the season (how many Saturdays)? Justify your answer.

5. What would the answers for questions 1-4 be if the league had 30 teams? Justify your answer.

6. What would the answers for questions 1-4 be if the league had 20 teams playing each other 3

times each?

7. What would the answers for questions 1-4 be if the league had n teams playing each other m
times?

 Version 2.0

Exploring Computer Science—Unit 2: Activity Day 10 Page 86

Binary Art Project

Create 341 bits of information about you that could be sent into space. If intelligent life out there
receives this information and decodes your information, the resulting pictogram should display
information about you.

341 is a semi-prime, only divisible by 11 and 31. The table below has 31 rows and 11 columns.

Use 0's and 1's or two colors to encode your pictogram.

 Version 2.0

Exploring Computer Science—Unit 2: Activity Day 10 Page 87

 Version 2.0

Exploring Computer Science—Unit 2: Activity Day 18 Page 88

Tower Building Activity

Donald Trump wants to build a 100 meter high tower as quickly as possible. He has unlimited resources and an
unlimited budget and is willing to spend any amount to get the job done.

He has chosen to build the tower with blocks that are 100 meters long and 100 meters wide, but only 1 meter
tall. The blocks interlock on top and bottom (like legos). They cannot be stacked sideways.

Using special lifters, putting one block on top of another block takes one week regardless of how high the stacks
are.

What is the shortest amount of time that it will take to build the tower?

Suggestions:

• Use legos to help solve this problem.
• Start with a smaller tower of 10 or 20 - solve a smaller problem.
 Extend that knowledge to the larger problem.

 Version 2.0

Exploring Computer Science—Unit 2: Final Project Page 89

Final Project

Your task is to create the most inexpensive plan for constructing new high speed roadways in place of existing
roads between 10 US cities and present your plan to the class.

Scenario:

The Department of Transportation is considering the construction of new high speed roadways in place of
existing roads between the 10 US cities you have been given. Their goal is to connect all these cities as cheaply
as possible. The cost of changing an existing road to a high speed roadway is 1 (where 1 represents whatever the
base cost per mile is) for every mile of interstate, 2 (twice the cost per mile as interstate) for every mile of state
highway, and 3 (three times the cost per mile as interstate) for every county highway, etc.

You will need a road atlas to find the various distances and types of roads.
Your presentation can be given as a poster, a powerpoint, a video or other pre-approved product.

Your presentation should include:

1. The names of people in your group
2. A picture (graph) representing all the cities with all roads between them labeled with mileages and

costs.
3. A detailed plan of your solution
4. A written explanation of the strategies you used to find the least expensive solution

o The solution on the graph and the total cost of the project.

 Version 2.0

Exploring Computer Science—Unit 2: Final Project Suggested Rubric Page 90

Final Project Suggested Rubric

Group Members Names: (up to 4)

 _______________________ _______________________

_______________________ _______________________

Do you have? Points Possible Yes No Points Earned

Detailed Plans

Overall plan to solve the problem 10

Explanation of strategies used to solve the problem 15

Other parts of your project:

Graph labeled with cities and mileage 10

Graph labeled with costs 15

Solution labeled on graph 20

Total cost 10

Presentation

Present your solution 20

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 3: Web Design Page 91

Unit 3:

Web Design

© Computer Science Equity Alliance, 2009

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 92

Daily Overview Chart

Instructional Day Topic

1-2 Issues of social responsibility in web use are explored as well as the
relative merits of the influence of the web on society, personal lives, and
education.

3-4 Examine various Web 2.0 applications and their use in social web based
search as well as shared media and data storage.

5-7 Explore the concept that free web applications can serve as replacements
for desktop applications. Three different web applications are considered.

8-9 Introduce the use of basic html and css markup.

10-11 Explore the concept of separating style from structure by keeping separate
html and css files and making code more reusable.

12 Explore image editing for the web using Photoshop or an image editor of
choice.

13 Use styling tables in html.

14 Use lists and nested lists for presenting information such as outlines in a
web page.

15 Introduce the use of css as a page layout method. Consider spacing and
placement as design elements.

16-18 Practice using style tables, lists and css in the context of a web page
creation project.

19 Introduce basic javascript. Add interactivity to web pages.

20 Introduce javascript functions. Create modular, reusable code and using
javascript to learn fundamental programming concepts.

21-22 Introduce several web user interface elements combining javascript, html,
css, and Photoshop.

23 Implement advanced functionality with javascript libraries. Create
accordion menus based on the mootools implementation.

24-25 Further explore the use of javascript library effects, including lightbox
slideshow and sliding image puzzles.

26-27 Explore javascript and the use of random numbers.

28-30 The class completes final projects.

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 93

Daily Lesson Plans

Instructional Days: 1-2

Topic Description: This lesson engages students in a discussion of the web as social experience. Issues of social
responsibility in web use are explored as well as the relative merits of the influence of the web on society,
personal lives, and education.

Objectives:

The student will be able to:

• Set up a blog

• Explain basic security issues on the internet

• Identify web applications which influence society and education

• Identify appropriate vs. inappropriate use of social websites

Outline of the Lesson:

• Set up a blog (25 minutes)

• Discussion of online security issues (20 minutes)

• Blog entry of students’ online experiences (10 minutes)

• Discussion of parts 1 – 3 of Growing Up Online from the PBS series Frontline (40 minutes)
• Blog entry reflecting on Growing Up Online. (15 minutes)

Student Activities:

• Set up a blog.

• Participate in discussion of online security.

• Create a blog entry on online experiences.

• Participate in a discussion about online experiences with social networking sites, blogs, email, online
chatting and the kind of impact it has had on their lives?

• View and discuss Growing Up Online.

• Create a Blog entry reflecting on Growing Up Online.

Teaching/Learning Strategies:

• Set up a blog
o Complete the portions of the setup that were not done prior to class.
o Guide a discussion of online security as students work on setting up their blogs.

• Create a blog entry on online experiences
o Show students how to create a blog entry using the blogging tool chosen for the class.
o Have students create an entry that describes some of their current online experiences.

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 94

• Guide a discussion regarding student use of social networking applications. (Note: This discussion may
be a review of discussions from Unit 1) Ask question such as:

o Which social networking applications do you use? (blogging, facebook, myspace)
o How often? How many of your friends use them?
o How important are these web applications to your lives? How have they changed your lives?

 Living their Lives Essentially Online
 A Revolution in Classrooms and in Social Life
 Self Expression, Trying On New Identities

• Display parts 1 – 3 of Growing Up Online from the PBS series Frontline
o After viewing the video, lead a discussion on the content.

• Blog entry reflecting on Growing Up Online.
o Have students create a blog entry reflecting on the video. Did any of their thoughts change after

viewing the video?

Note: Helping each student set up a blog will require some time outside of class and should be completed in
advance of the lesson. For example, students need to get a free google gmail account before signing up for
blogger. This can only be done outside of the LAUSD firewall.

Resources:

• http://www.pbs.org/wgbh/pages/frontline/kidsonline/

• http://www.georgebenainous.com/web (web 2.0--project ideas)

Suggested blogging tools:

• http://www.blogger.com

• http://www.wordpress.com

• http://www.tumblr.com

http://www.pbs.org/wgbh/pages/frontline/kidsonline/�
http://www.georgebenainous.com/web�
http://www.blogger.com/�
http://www.wordpress.com/�
http://www.tumblr.com/�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 95

Instructional Days: 3-4

Topic Description: This section examines various Web 2.0 applications and their use in social web-based search
as well as shared media and data storage.

Objectives:

The student will be able to:

• Differentiate between a ranking based search engine such as google or yahoo and a social bookmarking
(collaborative) search engine such as del.icio.us, ma.gnolia.com, or stumbleupon.com.

• Use various web 2.0 visualization tools such as tag clouds.

• Create and edit lists using a web application.

Outline of the Lesson:

• “to do” list (15 minutes)

• Use of social bookmarking websites (30 minutes)

• Tag clouds (35 minutes)
• Use of web 2.0 applications that create and edit lists (30 minutes)

Student Activities:

• Create a “to do” list.

• Complete a tag-based search on del.icio.us and a term-based search on google.

• Create word clouds from famous speeches or poems at wordle.net.

• Sign up for an account on tadalist.com.

• Create a number of lists as directed by the teacher.

Teaching/Learning Strategies:

• Have students create a “to do “ list on their blogs or in their journals.

• Model the use of various search engines and social bookmarking websites.

• Assist students in the creation and use of social bookmarking.
o Students should include bookmarks for the sites used in their Unit 1 projects on how computers

are used in various venues

• Guide a discussion comparing the results of social bookmarking to a ranking based search engine.

• Assist students in the use of a web 2.0 list creation application.
o Point out features of tadalist.com and how to create an account.
o Examples: favorite movies, goals, nightly homework assignments.

Resources:

• http://del.icio.us

• http://ma.gnolia.com/

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 96

• http://www.stumbleupon.com/

• http://www.stumbleupon.com/productdemo.html (video demo)

• http://www.wordle.net

• http://www.tadalist.com

• http://www.georgebenainous.com/web (web 2.0--project ideas)

http://www.georgebenainous.com/web�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 97

Instructional Days: 5-7

Topic Description: This section explores the concept that free web applications can serve as replacements for
desktop applications. Three different web applications are considered.

Objectives:

The student will be able to:

• Edit an image online using Photoshop Express.

• Create a flash card or quiz application using quizlet.com.

• Create an online slide presentation using sliderocket.com.

Outline of the Lesson:

• Maintain and update blog entries and/or lists kept on tadalist (10 minutes)

• Online presentation on how to get started using Photoshop Express (15 minutes)

• Use of Photoshop Express to upload images and make edits (20 minutes)

• Online presentation on how to get started using quizlet.com (10 minutes)

• Creation of an online flash card/quiz using quizlet. (40 minutes)

• Online videos on how to get started using sliderocket (15 minutes)

• Review of image editing and slideshow presentation techniques and requirements (10 minutes)

• Creation of online slide presentation (30 minutes)

• Share student work created using quizlet and sliderocket (15 minutes)

Student Activities

• Maintain and update blog entries and/or lists kept on tadalist.

• Watch an online presentation on how to get started using Photoshop Express at
http://www.photoshopexpresstechniques.com/.

• Upload and edit images online with Photoshopexpress.

• Watch an online presentation on how to get started using quizlet.com at http://quizlet.com/demo/.

• Create an online flash card/quiz using quizlet.

• Watch online videos on how to get started using sliderocket at
http://www.sliderocket.com/demos.html.

• Participate in discussion of the use of image editing and slideshow presentation technigques.

• Create an online slide presentation using sliderocket.

• Use Photoshop Express to edit images.

• Share completed presentations and flash card presentations from previous day.

Teaching/Learning Strategies:

• Maintain and update blog entries and/or lists kept on tadalist

http://www.photoshopexpresstechniques.com/�
http://quizlet.com/demo/�
http://www.sliderocket.com/demos.html�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 98

o This can be a daily dispatch if you choose; as an example, it could be a list of homework
assignments.

• Show the online presentation on how to get started using Photoshop Express at
http://www.photoshopexpresstechniques.com/.

• Upload and edit images online with Photoshop Express
o Determine how many images you want students to edit and where they will save their images.

• Show the online presentation on how to get started using quizlet.com at http://quizlet.com/demo/.

• Create an online flash card/quiz using quizlet.
o This can be based on the content of a current assignment in an English, Math, History, Science,

or Foreign Language class and could be an opportunity for working with teachers in other
content areas.

• Show the online videos on how to get started using sliderocket at
http://www.sliderocket.com/demos.html.

• Guide students in preparation of content and structure of an online slide presentation
o Review use of online web applications
o Present requirements for completed online slide presentations . (Note: parts of this assignment

can be assigned as homework)

• Share student work
o This can either be done by viewing at each other's web addresses or through use of overhead

projector.

Note: Most web applications require time to create accounts. This is something that can be completed in
advance or by students at home.

Resources:

• http://www.photoshopexpresstechniques.com/

• http://quizlet.com/demo/

• http://www.sliderocket.com/demos.html

• http://www.zoho.com

• http://www.georgebenainous.com/web (web 2.0—project ideas)

http://www.photoshopexpresstechniques.com/�
http://quizlet.com/demo/�
http://www.sliderocket.com/demos.html�
http://www.photoshopexpresstechniques.com/�
http://quizlet.com/demo/�
http://www.sliderocket.com/demos.html�
http://www.zoho.com/�
http://www.georgebenainous.com/web�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 99

Instructional Days: 8-9

Topic Description: An introduction to the use of basic html and css markup.

Objectives:

The student will be able to:

• Explain the concept of a url and the relationship of an html page to a web browser.

• Create an html page with paragraph tags, images, and css styling using a free or shareware html editor
or proprietary web editing software.

Outline of the Lesson:

• Web related vocabulary items/acronyms (5 minutes)

• Sample web content (5 minutes)

• Movie review html/css page (40 minutes)

• Share student work (10 minutes)

• A second html/css page (40 minutes)

• Share student work (10 minutes)

Student Activities:

• Explain web related vocabulary.

• Examine sample web content.

• Complete movie review htm/css project.

• Share completed projects.

• Complete second htm/css project.

• Share completed projects.

Teaching/Learning Strategies:

• Web related vocabulary
o Provide students with a list of various vocabulary; for example, http (hypertext transfer

protocol), html (hypertext markup language), url (uniform resource locator) and css (cascading
stylesheet) .

• Sample web content
o Answer questions as students view and read the html/css basic markup section on tutorial

website.
o Demonstrate the creation of a basic htm/css page in the html editor of choice.

• Students create a website with one or more movie reviews. The html page will contain the following
paragraphs for each review: title, director, synopsis, review. The css stylesheet will have corresponding
classes. The page will also include:

o At least one picture
o The name of one of at least one of the actors in italics

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 100

o Give the background and text colors
• Share student work

o Guide students in sharing their work either by a gallery walk, volunteers, etc.

• Complete second htm/css project
o Some examples of projects from which to have students choose are provided in the tutorial or

create your own project for the students to do.

• Share results of student work
o Guide students in sharing their work either by a gallery walk, volunteers, etc.

Resources:

• http://www.georgebenainous.com/web (html/css--basic markup)

html editors

• http://www.tacosw.com (mac only)

• http://www.barebones.com/products/TextWrangler/index.shtml (mac only)

• http://smultron.sourceforge.net/ (mac only)

• http://www.alleycode.com/download.htm (windows only)

html and css tutorials

• http://www.w3schools.com/html/

• http://www.w3schools.com/css/default.asp

http://www.georgebenainous.com/web�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 101

Instructional Day: 10-11

Topic Description: Explore the concept of separating style from structure by keeping separate html and css files
and making code more reusable.

Objectives:

The student will be able to

• Create an html page which links to a separate css file.

• Use html tags and css styling elements to separate style from structure.

Outline of the Lesson:

• Review of html/css concepts and describe how to link to a separate css file. (5 minutes)

• Sample web content (15 minutes)

• Creation of separate htm and css pages for the previous movie review project (40 minutes)

• Creation of separate htm and css pages for a second project (40 minutes)

• Share student work (10 minutes)

Student Activities:

• Review web related vocabulary and concepts.

• Examine sample web content.

• Complete htm/css movie review project.

• Complete htm/css project 2.

• Share completed projects.

Teaching/Learning Strategies:

• Review of web related vocabulary and concepts
o Guide a discussion of the highlights of the previous lesson.

• Sample web content
o Answer questions as students view and read the html/css reusable code section on tutorial

website.
o Demonstrate the creation of a basic htm/css page in the html editor of choice.

• Complete htm/css movie review project
o Have students revise their previous movie review project to incorporate the new ideas.

• Complete htm/css project 2
o One example of a project might be to create a website with information on their favorite band.

 A Paragraph with the name of the band in large bold print.
 At least one picture
 The genre of the band in italics (i.e. Rock, Rap, etc)
 A list of some of the songs from the band in a paragraph in regular print

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 102

 A separate section that explains why the band is your favorite
 The background and text in different colors

o Other examples can be found in the tutorial

• Share student work
o Guide students in sharing their work either by a gallery walk, volunteers, etc.

Resources:

• http://www.georgebenainous.com/web (html/css—reusable code)

• http://www.w3schools.com/html/

• http://www.w3schools.com/css/default.asp

http://www.georgebenainous.com/web�
http://www.w3schools.com/html/�
http://www.w3schools.com/css/default.asp�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 103

Instructional Day: 12

Topic Description: Explore image editing for the web using Photoshop or an image editor of choice.

Objectives:

The student will be able to:

• Identify the standard image resolution for the web (72 dpi).

• Resize and crop images for the web.

• Identify and differentiate between the various image formats used in web sites: jpg, gif, png.

• Use a java applet in a web page.

• Use a java based photo morphing web site.

Outline of the Lesson:

• Discussion of various web image formats (5 minutes)

• Selecting and cropping a series of images (30 minutes)

• Use of a java-based image morphing website to save images (20 minutes)

Student Activities:

• View and discuss the web image issues outlined in the objectives section and detailed in the tutorial
website.

• Select and crop a series of images.

• Use a java-based image morphing website.

Teaching/Learning Strategies:

• Discussion of various web image formats
o Explain image properties relevant to web use.
o Demonstrate how to import a java applet into and html page.

• Selecting and cropping a series of images
o Demonstrate how to crop and resize images in Photoshop.
o Explain to students how to use them with the lake applet.

• Use of a java-based image morphing website.
o Demonstrate the java photo morphing website available at http://morph.cs.st-andrews.ac.uk/.
o Explain that students should save their images for use in a later project.

Resources:

• http://www.georgebenainous.com/web (photoshop—project 1)

• http://morph.cs.st-andrews.ac.uk/

• https://www.photoshop.com/express

http://morph.cs.st-andrews.ac.uk/�
http://www.georgebenainous.com/web�
http://morph.cs.st-andrews.ac.uk/�
https://www.photoshop.com/express�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 104

Instructional Day: 13

Topic Description: This lesson introduces html tables and adding css styling to tables.

Objectives:

The student will be able to:

• Use table, row, and column tagging in an html page.

• Create an html page with a table presenting structured information.

• Add css styling to an html table.

Outline of the Lesson:

• Explanation of how to create an html table (10 minutes)

• Examples where data lends itself to being presented in a table (5 minutes)

• Creation of two or more htm/css pages which use tables (30 minutes)

• Share student work (10 minutes)

Student Activities:

• Explain how to create an html table.

• View examples where data lends itself to being presented in a table.

• Create two or more htm/css pages which use tables.

• Share completed projects.

Teaching/Learning Strategies:

• Demonstrate how to create a table, how to add rows and columns and how to add css styling to table,
row, and column elements

• Demonstrate examples where data lends itself to being presented in a table

• Explain table project requirements
o Some examples of projects from which students might choose are:

 Create a one page website using an html table of their class schedule.
 Create a one page website using an html table of their address book.
 Create a one page website using an html table based on a list gathered from research..

• Example 1: president, year elected, party

• Example 2: planet, number of moons, distance from the sun

• Example 3: the table of elements

• Share student work

Resources:

• http://www.georgebenainous.com/web (html/css—tables)

http://www.georgebenainous.com/web�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 105

html and css tutorials

• http://www.w3schools.com/html/

• http://www.w3schools.com/css/default.asp

http://www.w3schools.com/html/�
http://www.w3schools.com/css/default.asp�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 106

Instructional Day: 14

Topic Description: Use lists and nested lists for presenting information such as outlines in a web page.

Objectives:

The student will be able to:

• Use ordered and unordered list tagging in an html page.

• Create an html page with lists and nested lists.

• Add css styling to an html list.

Outline of the Lesson:

• Explanation of how to create html ordered and unordered lists. Examine how to add css styling to list
elements (10 minutes)

• Examples where data lends itself to being presented in a list (5 minutes)

• Creation of two or more htm/css pages which use lists (30 minutes)

• Share student work (10 minutes)

Student Activities:

• Explain how to create an html list.

• View examples where data lends itself to being presented in a list.

• Create two or more htm/css pages which use lists.

• Share completed work.

Teaching/Learning Strategies:

• Demonstrate how to create ordered and unordered lists and how to add css styling to list elements.

• Demonstrate examples where data lends itself to being presented in a list.

• Explain table project requirements.
o Guide students as they research online.
o Approve projects.
o Circulate room and help students with projects.

• Share student work.

Resources:

• http://www.georgebenainous.com/web (html/css—styled lists)

html and css tutorials

• http://www.w3schools.com/html/

• http://www.w3schools.com/css/default.asp

http://www.georgebenainous.com/web�
http://www.w3schools.com/html/�
http://www.w3schools.com/css/default.asp�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 107

Instructional Day: 15

Topic Description: Introduce the use of css as a page layout method. Consider spacing and placement as design
elements.

Objectives:

The student will be able to:

• Use grid elements in css div placement.

• Create web pages which place div elements using absolute positioning.

Outline of the Lesson:

• Preliminary css positioning and opacity exercise (15 minutes)

• Design and creation of two or more htm/css pages which use css positioning and varying opacity (35
minutes)

• Share student work (5 minutes)

Student Activities:

• Create two or more htm/css pages which use css positioning.

• Design and create an online advertisement using css positioning and varying opacity for overlapping
images.

• Complete preliminary css positioning and opacity exercise.

• Complete css positioning project.

• Share completed work.

Teaching/Learning Strategies:

• Demonstrate the div positioning using css.

• Explain css positioning project requirements.

• Complete the following project
o By extending the idea from the previous project, students will create a web page which serves

as an advertisement for a product of their choice.

• Share student work.

Resources:

• http://www.georgebenainous.com/web (html/css—page layout)

html and css tutorials

• http://www.w3schools.com/html/

• http://www.w3schools.com/css/default.asp

http://www.georgebenainous.com/web�
http://www.w3schools.com/html/�
http://www.w3schools.com/css/default.asp�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 108

Instructional Days: 16-18

Topic Description: Practice the use of various design elements.

Objectives:

The student will be able to:

• Create web pages which incorporate design elements previously studied.

Outline of the Lesson:

• Explanation of project (10 minutes)

• Design and creation of a web page that links to at least 5 other websites (135 minutes)

• Share student work

Student Activities:

• Design and create a web page that links to at least 5 other websites based on their projects from Unit 1
on how computers are used in various venues.

• Share completed work.

Teaching/Learning Strategies:

• Design and create a web page that links to at least 5 other websites based on their projects from Unit 1
on how computers are used in various venues.

o Students may work in the same groups as in Unit 1 or switch based on interest, but groups
should stay the same size.

o Remind students that they bookmarked the web pages used for these projects during the lesson
social bookmarking earlier in this unit.

o Their website should highlight the findings they used for their Unit 1 presentations.

• Share student work.

Resources:

• http://www.georgebenainous.com/web (html/css)

http://www.georgebenainous.com/web�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 109

Instructional Day: 19

Topic Description: Introduce basic javascript; add interactivity to web pages.

Objectives:

The student will be able to:

• Add a javascript to an html page.

• Link to an external javascript file.

• Create alerts and prompts in javascript.

• Write basic math statements in javascript.

Outline of the Lesson:

• Demonstration of javascript basic markup code samples (5 minutes)

• Creation of javascripts (10 minutes)

• Extension of code samples provided in tutorial website (40 minutes)

Student Activities:

• View code samples from tutorial website.

• Create initial javascripts.

• Extend code samples provided in tutorial website.

Teaching/Learning Strategies:

• Demonstrate how to create and link to a javascript file.

• Guide students in the creation of initial javascript files.

• Extension of code samples provided in tutorial website
o Demonstrate how to extend the code samples.
o Students extend the code samples.

Resources:

• http://www.georgebenainous.com/web (javascript—basic scripting)

 Javascript tutorial

• http://www.w3schools.com/JS/default.asp

http://www.georgebenainous.com/web�
http://www.w3schools.com/JS/default.asp�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 110

Instructional Day: 20

Topic Description: Introduce javascript functions. Create modular, reusable code and use javascript to learn
fundamental programming concepts.

Objectives:

The student will be able to:

• Use the correct syntax rules for creating functions in javascript.

• Create javascript math functions.

• Create javascript functions which apply css styling to a div.

Outline of the Lesson:

• Demonstration of javascript function code samples (10 minutes)

• Creation of a javascript function (10 minutes)

• Extension of code samples provided in tutorial website (35 minutes)

Student Activities:

• View javascript code samples from tutorial website.

• Create a simple javascript function.

• Extend code samples provided in tutorial website and create math functions.

Teaching/Learning Strategies:

• Demonstrate how to create a javascript function.

• Guide students in the creation of initial javascript functions.

• Extension of code samples provided in tutorial website
o Demonstrate how to extend the code samples provided in the tutorial website
o Students extend the code samples to create their own math functions a

Resources:

• http://www.georgebenainous.com/web (javascript—functions)

Javascript tutorial

• http://www.w3schools.com/JS/default.asp

http://www.georgebenainous.com/web�
http://www.w3schools.com/JS/default.asp�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 111

Instructional Days: 21-22

Topic Description:

This lesson introduces several web user interface elements combining javascript, html, css, and Photoshop.

Objectives:

The student will be able to:

• Apply a Photoshop filter, effect, or image adjustment using the lasso tool.

• Create a rollover button using javascript.

• Implement a menu using a styled list (with pre-implemented css).

• Create a multi-page web site.

Outline of the Lesson:

• Review of the use of filters, effects, and image adjustments in Photoshop and demonstrate the creation
of rollover buttons. (10 minutes)

• Creation of several javascript rollover buttons. (10 minutes)

• Creation of a menu (10 minutes)

• Creation of a single template html file. (10 minutes)

• Explanation of the requirements for the continental mapping project and the use of an html template.
(15 minutes)

• Continental mapping project (40 minutes)

• Share student work (10 minutes)

Student Activities:

• View the rollover section of the javascript tutorial on the creation of rollover buttons.

• Create several rollover buttons.

• Review the section of the tutorial website dealing with using the lasso for inverted selections.

• Create a single template html file with a menu.

• Implement the continental mapping project.

• Share completed work.

Teaching/Learning Strategies:

• Review of the use of filters, effects, and image adjustments in Photoshop.
o View the rollover section of the javascript tutorial on the creation of rollover buttons.

• Creation of several rollover buttons.
o Guide students in the creation and choice of visual themes for the buttons.

• Review the section of the tutorial website dealing with using the lasso for inverted selections

• Review the section of the tutorial website dealing with menus.

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 112

• Creation a single template html file.
o Circulate room and help students.

• Continental mapping project
o Review the requirements for the continental mapping project.
o Respond to questions on the use of an html template.
o Use the template created the previous day to implement the continental mapping project as

outlined in the tutorial website.
o Demonstrate how to extend the code samples provided in the tutorial website.

• Share student work.

• Consider creating a second project using the same techniques as the continental mapping project. (See
the sample projects described in the tutorial website.)

Resources:

• http://www.georgebenainous.com/web (photoshop—filters/effects, javascript—rollover buttons,
photoshop—project 2)

• https://www.photoshop.com/express/index.html

http://www.georgebenainous.com/web�
https://www.photoshop.com/express/index.html�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 113

Instructional Day: 23

Topic Description: Use Mootools to create a web 2.0 style navigation called the accordion menu.

Objectives:

The student will be able to:

• Include a javascript library.

• Create a website which uses the accordion menu based on the mootools implementation.

Outline of the Lesson:

• Demos from mootools.net (10 minutes)

• Use of the accordion menu (5 minutes)

• Creation of a website in which content is displayed using the accordion menu. (30 minutes)

• Share student work (10 minutes)

Student Activities:

• View demos from mootools.net on how to include a javascript library in html code.

• View the mootools section of the tutorial website.

• Create a website in which content is displayed using the accordion menu.

• Share completed work.

Teaching/Learning Strategies:

• Demonstrate how to include a javascript library.

• Guide students through the mootools section of the tutorial website.

• Guide students through mootools.net, demonstrating other possible ajax effects.

• Delineate the technical and content requirements for an accordion menu driven website.

• Explain project
o Circulate room and help students with projects.

• Review/evaluate student work

Resources:

• http://www.georgebenainous.com/web (javascript—mootools)

• http://www.mootools.net

• http://www.wikipedia.net

http://www.georgebenainous.com/web�
http://www.mootools.net/�
http://www.wikipedia.net/�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 114

Instructional Day: 24-25

Topic Description: This lesson further explores the use of javascript library effects, including the lightbox
slideshow and jquery.

Objectives:

The student will be able to:

• Implement advanced interactive web functionality through the inclusion of javascript libraries.

• Create a lightbox slideshow.

• Create a sliding image puzzle.

Outline of the Lesson:

• Demonstration of lightbox slideshow (5 minutes)

• Creation of a website in which content is displayed using a lightbox slideshow (20 minutes)

• Share student work (5 minutes)

• Demonstration of a sliding image puzzle (5 minutes)

• Creation of a sliding image page (15 minutes)

• Share student work (5 minutes)

Student Activities:

• View the use of a lightbox slideshow as implemented in the tutorial website.

• Create a website in which content is displayed using a lightbox slideshow.

• Share completed work.

• View the use of a sliding image puzzle as implemented in the tutorial website.

• Create sliding image page.

• Share completed work.

Teaching/Learning Strategies:

• Guide students through the lightbox slideshow as implemented in the tutorial website.

• Create a website in which content is displayed using a lightbox slideshow.
o Have students create a slideshow with at least five pictures and include captions for each

picture.

• Share student work.

• Guide students through the sliding image puzzle as implemented in the tutorial website.

• Create sliding image page
o Students can use an image of their choice.
o Have students use Photoshop to resize /crop images as needed.
o Share puzzles with elbow partners.

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 115

Resources:

• http://www.georgebenainous.com/web (javascript—light box, javascript—jquery)

• http://www.lokeshdhakar.com/projects/lightbox2/

• http://www.bennadel.com/blog/1009-jQuery-Demo-Creating-A-Sliding-Image-Puzzle-Plug-In.htm

http://www.georgebenainous.com/web�
http://www.lokeshdhakar.com/projects/lightbox2/�
http://www.bennadel.com/blog/1009-jQuery-Demo-Creating-A-Sliding-Image-Puzzle-Plug-In.htm�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 116

Instructional Days: 26-27

Topic Description: Random numbers are used in game design and can also be used to add a dynamic element to
web pages. This section explores javascript and the use of random numbers.

Objectives:

The student will be able to:

• Use javascript to generate a random number within a specified range.

• Use javascript to generate random elements on an html page.

• Assign values to an array in javascript.

Outline of the Lesson:

• Demonstration of the use of Math.random() (5 minutes)

• Extension of the guessing game from Random Demo 2 (5 minutes)

• Implementation of a new version of Random Demo 2 (10 minutes)

• Demonstration of the use of random numbers in javascript to assign string elements to an array (5
minutes)

• Implementation of a simplified version of the Shakespearean insult web page (30 minutes)

• Review of the results of the previous days exercise (10 minutes)

• Creation of a poetry generating web page (30 minutes)

• Share student work (15 minutes)

Student Activities:

• View the code samples on the use of Math.random() to generate random numbers in javascript in the
tutorial website.

• Modify and implement the code in the tutorial website in order to extend the guessing game from
Random Demo 2 so that a new range can be implemented.

• Implement a new version of Random Demo 2.

• View the code samples on the use of random numbers in javascript to assign string elements to an array
on the tutorial website.

• Implement a simplified version of the Shakespearean insult web page as a sentence combining exercise.

• Review the results of the previous days exercise.

• Create a poetry generating web page.

• Share completed work.

Teaching/Learning Strategies:

• Demonstrate the code samples on the use of Math.random() to generate random numbers in javascript
in the tutorial website.

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 117

• Guide students as they modify and implement the code in the tutorial website in order to extend the
guessing game from Random Demo 2 so that a new range can be implemented.

• Guide students as they implement a new version of Random Demo 2.

• Demonstrate the code samples on the use of random numbers in javascript to assign string elements to
an array on the tutorial website.

• Guide students as they Implement a simplified version of the Shakespearean insult web page as a
sentence combining exercise

• Review the results of the previous days exercise.

• Delineate the technical and content requirements for creating a poetry generating web page
o Use the same techniques as the previous exercise.
o If possible, include random generation of images and/or background colors.
o Share completed work.

Resources:

• http://www.georgebenainous.com/web (javascript—random numbers)

http://www.georgebenainous.com/web�

 Version 2.0

 Exploring Computer Science—Unit 3: Web Design Page 118

Instructional Days: 28-30

Topic Description: Students complete final projects.

Objectives:

The students will be able to:

• Incorporate all objectives of the unit into the final project.

Outline of the Lesson:

• Explanation of final project (15 minutes)
• Final project (135 minutes)
• Gallery walk and vote on final projects (15 minutes)

Student Activities:

• Complete final project.
• Participate in gallery walk to view and vote on completed projects.

Teaching/Learning Strategies:

• Final project
o Explain final project choices.
o Help students with projects as necessary.

• Gallery walk
o Encourage students to ask each other questions as they view the websites.
o Have students vote on their favorite.

Resources:

• Web Design Final Project

• Web Design Final Project Rubric

 Version 2.0

 Exploring Computer Science—Unit 3: Flash Supplement Page 119

Flash Animation Supplement
(These activities can be used as the last days prior to the final project if students finish other projects prior to the
time allotted.)

Instructional Day: 1

Topic Description: Adobe Flash (formerly Macromedia Flash) is a proprietary web animation platform. The
introductory lesson demonstrates how to use stop action photography and Flash to create a flipbook effect.

Objectives:

The student will be able to:

• Use stop action photography in animated flip books.

• Create a simple flash animation by importing a series of images.

Outline of the Lesson:

• Preview the stop action photography study of the galloping horse (5 minutes)

• Demonstration of how to clip each image in Photoshop (5 minutes)

• Demonstration of how to import a series of images into Flash and how to play the movie (10 minutes)

• Practice of the import procedure (5 minutes)

• Creation of a movie from stop action photography (25 minutes)

• Share student work (5 minutes)

Student Activities:

• Preview the stop action photography study of the galloping horse from the Flash section of the tutorial
website.

• View how to clip each image in Photoshop.

• View how to import a series of images into Flash and how to play the movie.

• Create a movie.

• Share completed work.

Teaching/Learning Strategies:

• Preview of the the stop action photography study of the galloping horse from the Flash section of the
tutorial website

o Discuss the historical significance of Eadweard Muybridge and stop action photography.
o Preview various Eadweard Muybridge photographic studies.

• Demonstration of how to clip each image in Photoshop
o Create eleven separate images..
o Follow a numerical naming convention: 01.jpg, 02.jpg...11.jpg.

• Demonstration of how to import a series of images into Flash and how to play the movie

 Version 2.0

 Exploring Computer Science—Unit 3: Flash Supplement Page 120

o Guide students as they follow the procedure after it is demonstrated.

• Creation of a movie
o Suggest students download another Eadweard Muybridge stop action photographic study and

follow the same procedure or have them photograph their own stop action study.
o Circulate room and help students choose and complete projects.

• Share student work

Resources:

• http://www.georgebenainous.com/web (flash—flipbook)

• http://www.adobe.com/cfusion/designcenter/search.cfm?product=Flash&go=Go

http://www.georgebenainous.com/web�
http://www.adobe.com/cfusion/designcenter/search.cfm?product=Flash&go=Go�

 Version 2.0

 Exploring Computer Science—Unit 3: Flash Supplement Page 121

Instructional Day: 2

Topic Description: An animation technique called tweening is explored in Adobe Flash.

Objectives:

The student will be able to:

• Use frame/timeline based animation.

• Use an automatic frame based animation technique called tweening.

• Create several examples of tweened animations.

Outline of the Lesson:

• Demonstration of tweening techniques (15 minutes)

• Creation of a visual composition (30 minutes)

• Share student work (10 minutes)

Student Activities:

• View tweening techniques (outlined in the tutorial website).

• Create a visual composition.

• Share completed work.

Teaching/Learning Strategies:

• Demonstration of tweening techniques (outlined in the tutorial website)
o motion, size, rotation, color
o Discuss elements of design as they pertain to objects in motion.

• Creation of a visual composition
o Explain the requirements for one or more of the following sample projects and guide students

as they create their versions.
 Create a visual composition using Flash tweening. (Remember to put each tween on a

separate layer). Study the ideas of symmetry (balance) and asymmetry (imbalance) in
motion.

 Create a visual composition using Flash tweening applied to initials. Students can use
their own initials. (Type can be tweened in Flash.)

• Share student work

Resources:

• http://www.georgebenainous.com/web (flash—tweening)

• http://www.adobe.com/cfusion/designcenter/search.cfm?product=Flash&go=Go

http://www.georgebenainous.com/web�
http://www.adobe.com/cfusion/designcenter/search.cfm?product=Flash&go=Go�

 Version 2.0

 Exploring Computer Science—Unit 3: Flash Supplement Page 122

Instructional Day: 3

Topic Description: The movie clip is the basic unit of Flash animation which allows for reusability and scripting.
This lesson is an introduction in the creation of movie clips.

Objectives:

The student will be able to:

• Explain the concept of a Flash movie clip.

• Differentiate between a movie clip and an instance of a movie clip.

• Create a movie clip based on keyframed animation.

Outline of the Lesson:

• Demonstration ofcreating a movie clip (10 minutes)

• Demonstration of how to reuse multiple instances of a movie (5 minutes)

• Creation of a horse movie clip (20 minutes)

• Creation and implementation of movie clips (20 minutes)

Student Activities:

• View examples of Flash movie clips.

• Create various Flash movie clips based on the galloping horse study as outlined in the Flash section of
the tutorial website.

• Design and create follow-up movie clips.

• View the creation of a movie clip.

• View how to reuse multiple instances of a movie clip.

• Create the horse movie clip as outlined in the tutorial website.

• Create and implement movie clips.

Teaching/Learning Strategies:

• Demonstration of examples of Flash movie clips
o Explain how to create a keyframed animation based on the galloping horse example from the

Flash section of the tutorial website.
o Guide students as they create various Flash movie clips based on the galloping horse study as

outlined in the Flash section of the tutorial website.
o Guide students as they design and create follow-up movie clips.

• Demonstration of creating a movie clip.

• Demonstration of how to reuse multiple instances of a movie clip
o including a secondary tweening

• Creation of a horse movie clip as outlined in the tutorial website

• Creation and implementation of movie clips

 Version 2.0

 Exploring Computer Science—Unit 3: Flash Supplement Page 123

o Guide students as they create their own ideas and then implement.

Resources:

• http://www.georgebenainous.com/web (flash—movie clips)

• http://www.adobe.com/cfusion/designcenter/search.cfm?product=Flash&go=Go

http://www.georgebenainous.com/web�
http://www.adobe.com/cfusion/designcenter/search.cfm?product=Flash&go=Go�

 Version 2.0

 Exploring Computer Science—Unit 3: Final Project Page 124

Final Project

Your task is to analyze an ethical dilemma. You must consider the alternatives and give reasons for the why and
the why not you should do what is described. Then you must choose what you would do and explain why.

1. Pick one of the four dilemmas listed or get approval for a different one.
2. Give 3 reasons why you should do what is described.
3. Give 3 reasons why you should NOT do what is described.
4. Choose what you will do and explain why.
5. Create a web site that describes your ethical dilemma and how you will handle it.

• Collect images and text and include references to sources.

• Create and use a template file which includes a navigation section, header section, body, sidebar

and footer sections.

• Use a css file to define layout and styling for headings, paragraphs, images, etc.

• Use a css file to define a menu from an unordered list.

• Give a visual and oral presentation when the web site is completed.

Ethical Dilemmas:

1. People illegally download music over the internet. Although it’s free, it is still illegal. What do you
choose to do? Why?

2. Your parent loses his/her job. You could help out by selling illegal dvds on the streets. What should you
do?

3. You have the ability to hack into the school computer system. You can change people’s grades. Would
you change your own? Why or why not? What if you could change the grade for a basketball player who
has a scholarship to play for a big university?

4. Someone you know works at a store that sells IPods. He steals some and asks if you want to buy one for
half the price the store sells it for? Should you buy it? Why or why not?

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 125

Final Suggested Project Rubric:

Do you have?
Points

Possible
Yes No

Points
Earned

THE DILEMMA

Do you have a title on your page. 5

Your dilemma is on your page. 5

You have 3 reasons why you should do it . 10

You have 3 reasons why you should NOT. 10

You have what you chose and why. 10

WEBSITE CONTENT

You use a background color or image. 10

You include at least one image not including the background . 10

You have links to all the pages of your website on each page. 5

Integrate either the lightbox slideshow or mootools accordion
into your website.

10

Use a shared external .css file for your site. 5

Peer Grading 20

Your project is voted best by your peers. (EXTRA CREDIT) up to 10

Total: 100

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 126

Unit 4:

Introduction to Programming

© Computer Science Equity Alliance, 2009

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 127

Daily Overview Chart

Instructional Day Topic

1 Introduce the Scratch programming language, including the basic terms
utilized in the language.

2-3 Practice using the basic features of Scratch in the context of creating a
simple program.

4 Create a dialogue between two sprites.

5-6 Introduce the methods of moving sprites in Scratch.

7-8 Practice the concept of event driven programming through the creation of
an alphabet game.

9 Introduce the concept of broadcasting via role play.

10 Develop a story to be used in a Scratch program.

11-15 Write Scratch stories and present them to the class. Peer reviews are
conducted.

16 Introduce the concept of variable.

17 Introduce the concept of conditionals.

18-19 Introduce And, Or and randomness.

20 Apply knowledge of conditionals to develop a Rock Paper Scissors program
in Scratch.

21 Build on previous programming concepts to create a timer.

22-26 Create a timing game in Scratch and present it to the class. Peer reviews
are conducted.

27 Investigate two types of games that may provide ideas for the final
project.

28 Explain final project and the rubric for the final project.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 128

29-33 Write Scratch programs for either My Community or Game project. Peer

reviews will be conducted.

34-35 Presentations of final projects.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 129

Daily Lesson Plans

 Instructional Day: 1

Topic Description: This lesson introduces the Scratch programming language, including the basic terms utilized in the
language.

Objectives:

 The students will be able to:

• Name the basic terms used in Scratch.
• Create the beginning of a simple program in Scratch.

Outline of the Lesson:

• Journal Entry (5 minutes)
• KWL chart about Programming/Scratch (15 minutes)
• Scratch intro video (10 minutes)
• Model of how to start name assignment (25 minutes)

Student Activities:

• Complete journal entry.
• Complete KWL chart about Programming/Scratch.
• Groups take turns sharing out their K’s and W’s orally.
• Watch Scratch intro video.
• Follow along with Scratch open as teacher models how to start name assignment.

Teaching/Learning Strategies

• Journal Entry: How do you think programs like Microsoft Word, Internet Explorer and Windows are made?
• KWL chart

o Students meet with groups and each groups fills out a KWL chart.
o Groups take turns sharing out their K’s and W’s orally. They are encouraged not to repeat anything that

has already been said.
o Put KWL charts up in the classroom; tell students that they will finish the L towards the end of the unit.

• Scratch intro video
o Played with sound. Can be played over a projector.

• Model of how to start name assignment
o Address how sound will be handled in the classroom.

 Scratch lends itself to playing sounds so it can get noisy. The teacher needs to decide how to
address this. Headsets with microphones are probably the best solution.

o Build a name project similar to name.sb.
o Emphasize

 Every character in Scratch is called a Sprite.
 Although Scratch is programming, it is not used in industry.
 How to choose a Sprite from a file

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 130

 How to paint your own sprite
 Each sprite has it’s own scripts.
 You can right click any block and select help to get more info on how to use it.
 How to change the language in Scratch (for your English Learners)
 How to go to full screen mode and back
 How to switch back and forth between sprites by clicking on them
 X and Y coordinates on the screen are shown on the bottom right below the stage
 How to save in the proper location (the default is to save in the Scratch Projects folder

(C:\\Program Files\Scratch\Projects))
 The following blocks should be modeled:

• Move _ steps
• If on edge, bounce
• Turn _ degrees
• Forever
• Change color effect by _
• When the green flag is clicked

 Students should not be scared to just try and experiment. They can’t break the computer by
dragging the wrong block.

 Show students where they can access ScratchGettingStarted.pdf. (It would probably be useful
to have printed copies for each student.)

 Show students Name Rubric

Resources:

• KWL Graphic Organizer Chart.pdf (UCLA SMP)
• ScratchIntro.wmv (scratch.mit.edu)
• ScratchGettingStarted.pdf (scratch.mit.edu)
• name.sb
• Name Rubric
• http://scratch.mit.edu

http://scratch.mit.edu/�

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 131

 Instructional Days: 2-3

Topic Description: This lesson provides students an opportunity to practice using the features of Scratch outlined on
Day 1 in the context of creating a simple program.

Objectives:

The students will be able to:

• Complete a simple Scratch program.
• Utilize the green flag feature.

Outline of the Lesson:

• Journal Entry (5 minutes)
• Class discussion of journal entry (15 minutes)
• Name programs (90 minutes)

Student Activities:

• Complete journal entry.
• Share out journal entry responses with the entire class.
• Write programs based on their own names.

Teaching/Learning Strategies:

• Journal Entry: What do you remember about Scratch from yesterday? What do some of the blocks do?
• Class discussion of journal entry

o Allow students to share their responses.
o In the process, make sure to review concepts needed to finish the name project.
o Review rubric for name project.
o Tell students that they will do a gallery walk of the projects at the beginning of tomorrow.

• Name programs
o Students write programs based on their own names.
o Teacher circulates room checking progress and answering questions.
o Before time is up, remind students to save their work.
o Remind students that Scratch is free to download at scratch.mit.edu

Resources:

• ScratchGettingStarted.pdf (scratch.mit.edu)
• name.sb
• Name Rubric
• http://scratch.mit.edu

http://scratch.mit.edu/�

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 132

 Instructional Day: 4

Topic Description: This lesson describes how to create a dialogue between two sprites by first creating a written
dialogue.

Objectives:

The students will be able to:

• Develop a dialogue between two or more Scratch sprites.
• Explain the reasoning behind how their dialogue works.

Outline of the Lesson:

• Gallery Walk of name projects (10 minutes)
• Assignment introduction (5 minutes)
• Develop dialogue (30 minutes)
• Student presentations (10 minutes)

Student Activities:

• Participate in a gallery walk of name projects.
• Participate and listen to assignment introduction.
• Develop a dialogue.
• Present dialogues.

Teaching/Learning Strategies:

• Gallery Walk of name projects
o Facilitate gallery walk by giving the students an order or pattern to follow in walking around the room

(dependent on lab).
• Assignment introduction

o Tell the students that they’ll be making a dialogue between two or more sprites.
o Have a sample dialogue with a student; for example,

 Teacher: Knock-Knock
 Student: Who’s there?
 Teacher: Juana
 Student: Juana who?
 Teacher: Juana go write a program in Scratch!
 Student: Ha ha!

o Make a sample program using only “say _ for _ secs” blocks.
o Ask the students what was the difference between the live dialogue and the sample program? (Answer

is that in the program they are talking at the same time.)
o Have the students help you find the “wait _ sec” block. Add a few so the students can see the sprites

taking turns.
o Show the students the rubric: Dialogue Rubric and tell them that they can create their own dialogue.

They can do their own knock-knock joke, or they can use their creativity.
• Develop Dialogue

o Circulate room and help students.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 133

• Student presentations
o Have students volunteer to present their dialogues for the entire class.

Resources:

• Dialogue Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 134

 Instructional Days: 5-6

Topic Description: This lesson describes the methods of moving Sprites in Scratch.

Objectives:

The students will be able to:

• Explain the 3 major ways to move sprites.
• Choose the appropriate method of moving to make a cat circle the bases.

Outline of the Lesson:

• Journal Entry (5 minutes)
• moving.sb (20 minutes)
• Discussion of answers to questions (15 minutes)
• baseball.sb (70 minutes)

Student Activities:

• Complete journal entry.
• Examine moving.sb.
• Discuss answers to questions.
• Complete baseball.sb.

Teaching/Learning Strategies:

• Journal Entry: Briefly describe how you would graph in your Algebra class (The x-y coordinate plane, etc)
o Teacher times the students so they work 4 min individually and 1 min sharing with their elbow partners.

• moving.sb
o Circulate the room and help students answer the questions.

• Discussion of answers to questions
o Emphasize that the “repeat” block will do whatever is inside it n times. This behavior can be called

iteration or looping.
o Emphasize the differences between the 3 ways to move.
o Emphasize how the sprites will reinitialize themselves when the green flag is clicked.

• baseball.sb
o Circulate the room and help students finish baseball.sb.
o After a student can get the cat around the bases, encourage them to use the “point in direction” block

to get the cat to turn the correct way when running.
o If students need a hint for the extra credit, show them the “next costume” and “switch to costume“

blocks under the “Looks” tab.

Resources:

• Moving Project
• Moving Project Solutions
• moving.sb
• baseball.sb
• baseball solution.sb

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 135

 Instructional Days: 7-8

Topic Description: This lesson introduces the concept of event driven programming and provides practice through the
creation of an alphabet learning game.

Objectives:

The students will be able to:

• Explain event driven programming.
• Write a program that responds to user created events from the mouse and keyboard.

Outline of the Lesson:

• Presentation of solution for baseball extra credit (10 minutes)
• Journal Entry (10 minutes)
• Event Lecture/Description of Alphabet Learning Game (20 minutes)
• Alphabet Learning Game (60 minutes)
• Student presentations (10 minutes)

Student Activities:

• Present solution for baseball extra credit.
• Complete journal entry.
• Develop an Alphabet Learning game.
• Volunteers complete presentations.

Teaching/Learning Strategies:

• Presentation of solution for baseball extra credit
o A student may present while others watch. If no student completed the extra credit, teacher presents.

See baseball solution.sb from previous lesson.
• Journal entry: How do the programs on the computer know what the user wants to do next? In other words, if

you are surfing the web, how does the computer know what page to go to next?
• Event Lecture/Description of Alphabet Learning Game

o Allow some students to share journal entry with class. Steer them towards the idea of user events
(clicks, typing) driving the program and causing it to respond.

o Scratch provides some blocks that allow you to write programs that respond to user events relatively
easily.
 When green flag clicked (we’ve already seen this)
 When Sprite clicked
 When _ key pressed

o Tell the students that they will be making an alphabet learning game.
o Share the rubric with them: Alphabet Rubric.
o Create the first letter in front of the class with the students helping you. See alphabet learning.sb

 Show how to create new costumes.
• Explain that students may bring in pictures from the internet.

o Download a .gif or .jpg.
o Use import or paint to make it the second costume for your letter.

 Show how to change costumes.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 136

• Use a “switch to costume _” block.
 Show students how to output in talk bubbles.

• Use a “say _ for _ sec” block.
o Remind the student that they may pick theme of alphabet game (animals, food, etc).

• Alphabet Learning Game
o Circulate room and answer questions.

• Voluntary student presentations
o Facilitate students in presenting.

Resources:

• alphabet learning.sb
• Alphabet Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 137

 Instructional Day: 9

Topic Description: This lesson introduces the concept of broadcasting through role play and then provides students an
opportunity to complete a broadcast event in Scratch.

Objectives:

 The students will be able to:

• Broadcast their own events.
• Listen to and respond to their own events.
• Change the background of the stage.

Outline of the Lesson:

• Journal Entry (5 minutes)
• Discussion of journal entry (2 minutes)
• Role Play (20 minutes)
• Scratch Summer Story (28 minutes)

Student Activities:

• Complete journal entry.
• Participate in discussion of journal entry.
• Participate in role play.
• Create a Scratch summer story.

Teaching/Learning Strategies:

• Journal Entry: What does it mean to broadcast something (example the radio station is broadcasting music right
now)? If a radio or tv station is broadcasting something, does that mean that everyone is listening to it?

• Discussion of journal entry
o Have a few students share their responses.
o Stress that even though a lot of things are being broadcast, not everyone is listening to every thing that

is being broadcast.
• Role Play

o Solicit Volunteers to be the various characters.
o Give the performers a paper with ONLY their part: see Scratch Broadcast Role Play.
o Pass out the chart that shows all the parts to students that are not performing. See Scratch Broadcast

Role Play Interwoven.
o The students can think of it as a three act play where the scenes change. The difference here is that

there are no curtains so they will see everything change.
o The teacher will be the director and will make sure everything and everyone is in place during each

scene. The teacher can yell action before the scene starts to signify that everything checks out.
o Each performer’s paper is broken into scripts for the various scenes.
o One performer will be in charge of setting the stage. They can do this by erasing and drawing pictures

on the white board behind the stage.
o The Cat’s first two scripts end with broadcasts. The cat will tell the director (teacher) that it is time to go

on to the next scene.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 138

o You might want to have different students perform the role play a second time. This time the teacher
will only yell out when the green flag is clicked. The students can check themselves to make sure that
everything is okay.

o Interesting Questions
 Why do The Crab and the Date have only two scripts? (Answer: They remain hidden during the

other scene.)
 Instead of using broadcast, do you think you could just use “wait _ secs” blocks? (Answer: yes.)
 What might be an advantage to using broadcast instead? (Answer: One advantage is that if your

entire program is based on waits, if you edit something in scene 1, it could possibly throw the
timing off for the rest of the program. Using broadcast can be simpler in the long run.)

o Discussion
 In Scratch, any sprite can broadcast their own event.
 One reason why The Cat is doing the broadcasts is because he is the last one to act in the first

two scenes. Therefore he knows when the scene is over.
 Other sprites (including the one that broadcasts the event) can receive the event and perform a

script
• Scratch Summer Story

o Show students
 Directions: Summer Story Project
 File to edit: summer.sb
 Rubric: Summer Story Rubric

o Circulate the room and answer questions.

Resources:

• Scratch Broadcast Role Play
• Scratch Broadcast Role Play Interwoven
• Summer Story Project
• summer.sb
• Summer Story Project Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 139

 Instructional Day: 10

Topic Description: Students will begin to develop their own stories and write them in Scratch.

Objectives:

The students will be able to:

• Start to develop a Scratch story.

Outline of the Lesson:

• Introduction of project (5 minutes)
• Journal Entry (5 minutes)
• Review of brainstorming (10 minutes)
• Scratch story (35 minutes)

Student Activities:

• Complete journal entry.
• Participate in discussion of brainstorming.
• Develop a Scratch story.

Teaching/Learning Strategies:

• Introduction of project
o Show rubric: Story Rubric.

 Emphasize that they will make a small presentation along with showing their story.
 Emphasize that there is extra credit for the best stories.

o Show example: cat story.sb
• Journal Entry: Brainstorm some ideas for your story.
• Review of brainstorming

o Split students into groups of three.
o Have students rotate so that each student will share brainstorms and receive feedback/suggestions from

the other students.
• Scratch story

o Circulate room and help students with stories.
o If students don’t know where to start

 Have them first develop their story on paper.
o If they have their story and don’t know where to start

 Have them make a title screen or a first scene.

Resources:

• cat story.sb
• Story Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 140

Instructional Days: 11-15

Topic Description: Students will review how to broadcast events by developing a Scratch story and presenting it to the
class.

Objectives:

The students will be able to:

• Broadcast events.
• Complete a Scratch story.
• Develop a Scratch story project.
• Assess their peers to help them gauge their progress.
• Complete a rubric.
• Prepare and make a presentation of a Scratch Story to the class.

Outline of the Lesson:

• Journal Entry. (5 minutes)
• Review of Broadcasting (5 minutes)
• Whole class review of Broadcasting (5 minutes)
• Scratch story (40 minutes)
• Scratch story project (55 minutes)
• Peer review and discussion (15 minutes)
• Completion of Scratch story project (95 minutes)
• Presentation of stories (55minutes)

Student Activities:

• Complete journal entry.
• Review Broadcasting with partner.
• Participate in whole class review of Broadcasting
• Continue developing story.
• Develop Scratch story project.
• Participate in peer review and discussion.
• Complete Scratch Story project.
• Present stories.

Teaching/Learning Strategies:

• Journal Entry: Write down everything you remember about using the “broadcast” block in Scratch and changing
scenes in a story.

o Have students do this silently on paper.
• Review of Broadcasting

o Have students pair up with elbow partners. One student shares first. The other student then shares
their response adding to the first student’s response.

• Whole class review of Broadcasting
o Have a few students volunteer. Clear up any misconceptions. Refer back to the previous day’s role play

as an example.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 141

• Continue developing the story
o Circulate room and help students with projects.
o If students don’t know where to start

 Have them first develop their story on paper.
o If they have their story and don’t know where to start

 Have them make a title screen or a first scene.
• Scratch Project

o If students get stuck, break the project into smaller parts. Have them focus on the next part that they
can complete.

o Refer them to the rubric to make sure they know what they need to complete in order to earn the grade
that they want.

• Peer Review and discussion
o Circulate the room and make sure students understand the rubric and what they still need to accomplish

to finish their project.
• Completion of Scratch story project

o Circulate room and help students with projects.
o Collect projects and rubrics
o Help students prepare their presentations

• Presentation of stories
o Have students complete the Peer Grading sheet.
o To help students vote on the best, you may need to do a quick recap of the stories, i.e. Bob’s story about

Poodles.
 If the class does not finish presentations in one day, the voting will be done the next day.

Resources:

• Story Project Rubric
• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 142

Instructional Day: 16

Topic Description: This lesson provides an introduction to the concept of variables.

Objectives:

The students will be able to:

• Explain the concept of variables.
• Create examples of variables.

Outline of the Lesson:

• Finish Presentations (25 minutes)
• Journal Entry (5 minutes)
• Make Variable Example (15 minutes)
• Enhance Variable Example (10 minutes)

Student Activities:

• Finish Presentations.
• Complete journal entry.
• Participate in a discussion of the Make Variable example
• Enhance the variable example.

Teaching/Learning Strategies:

• Finish Presentations
o Have students fill out Peer Grading sheet.
o To help students vote on the best, you may need to do a quick recap of the stories. You may also want

to quickly replay some of the better ones.
o Another option is to have students pick the best of each day and do a run off just replaying the top 3

from each day.
• Journal Entry: What does the word variable mean in both Math and English terms?

o Time the students so they work 3 min individually and 2 min sharing with their elbow partners.
• Make Variable Example

o Give two math examples. x + 3 = 5, 2x = 12
 Ask what is the name of the variable here? (Answer: x)
 Although you have x in both equations, it’s value varies: it is 2 in one equation and 6 in another.
 The notion is the same in a program – a variable is a name that represents a value that can be

changed. In the math example, the name was x.
o Make the variable example with the students: variable example.sb having the students help you and

build their own at the same time. A possible sequence might be
 Start by explaining that you want to make a game where you earn points for picking healthy

foods and lose points for picking unhealthy ones.
• What do you think the variable will be? If no answer, ask what name will represent a

number that will change? (Answer: Points (or Good Nutrition Points in the example))
 Add the sprites for the banana, cheesie poofs and text that says Click on food to eat it
 Ask, What tab they think they should click on to make a variable? (Answer: Variables.)
 Click “make a variable” calling it Good Nutrition Points.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 143

• Clicking the checkbox next to the variable will show or hide it.
 Ask, If I want to make my points increase by 1 every time I choose the banana, how would I

write that script? (see example)
 Ask, How about making the points decrease by one when I click on the cheesie poofs? (see

example)
 Ask, What do you think should happen when the green flag is clicked? (Answer: reset the points

to 0.)
• Ask, How do you think we should do that? (In example the script for this is under

Sprite4)
o Ask, Does it matter which script the “when green flag clicked” is under?

(Answer: No.)
• Enhance Variable Example

o Have Students enhance the variable example by
 adding a food that is worth 2 points when clicked on.
 adding a food that is –3 points when clicked on.

Resources:

• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 144

 Instructional Day: 17

Topic Description: This lesson provides an introduction to the concept of conditionals.

Objectives:

 The students will be able to:

• Explain the concept of conditionals.
• Enhance a variable program with conditionals.

Outline of the Lesson:

• Journal Entry (5 minutes)
• Conditional Lecture (15 minutes)
• Age Program (10 minutes)
• Age solutions (5 minutes)
• Enhance Variable Example (20 minutes)

Student Activities:

• Complete journal entry.
• Participate in discussion of conditions.
• Develop an Age program.
• Review Age solutions.
• Enhance the variable example.

Teaching/Learning Strategies:

• Journal Entry: What comes to mind when you hear the word “if”? What are some ways we use the word “if” in
English?

o Time the students so they work 3 min individually and 2 min sharing with their elbow partners.
• Conditional Lecture

o Have a few students share their responses for the if parts and use that as a springboard.
o Basically in English, if is used to state a condition where something might happen if the condition is true.

Hence this topic is called conditionals.
o An example from computing is when a program like Microsoft Word asks you if you want to save your

work when you hit close. If you click yes, it saves your changes. If you click no, it discards your changes.
o if (some condition)

 then do this
o Show students “if” block in Srcatch.

 Notice that only hexagon shaped blocks can fit within it.
 Notice that if the condition is true, it will do anything that is enclosed within the top and bottom

of the “if” block.
o Show the students age.doc and age.sb.

 Remind students that since we are using integers (whole numbers) > 15 it means people that
are over 15 not including 15

 Show them how to use the slider to change the age.
• Age Program

o For solution, see age solution.sb.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 145

• Age solutions
o Show a solution like age solution.sb.
o Show an alternate solution.

 Since numbers are integers (whole numbers) we can do “age > 2” to mean “age >= 3”.
 To do >= in scratch, you need to use the “or” block. See age – greater-equal.sb.

• Enhance Variable Example
o Instruct students to go back into their variable example about nutrition and add:

 A message about being nutritious if the amount of points becomes greater than 9.
 A message about eating healthier food if the points becomes less than –4.
 They can either have a sprite say the message or use broadcast to change the sprites/stage to

convey the message.

Resources:

• Age Project
• age.sb
• age solution.sb
• age – greater-equal.sb
• variable example.sb

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 146

 Instructional Days: 18-19

Topic Description: This lesson introduces And , Or and randomness. Students have an opportunity to practice utilizing
these features in the context of programs.

Objectives:

The students will be able to:

• Use conditionals with And and Or to write a grade program.
• Use a random number generator to write a dice program.

Outline of the Lesson:

• Journal Entry(5 minutes)
• And/Or Discussion (15 minutes)
• Grades program (35 minutes)
• Random Lecture (20 minutes)
• Dice (35 minutes)

Student Activities:

• Complete journal entry.
• Participate in And/Or Discussion.
• Develop Grades program.
• Participate in discussion of Random
• Complete Dice program.

Teaching/Learning Strategies:

• Journal Entry: What’s the difference between And and Or? What does the word Random mean in English?
o Teacher times the students so they work 4 min individually and 1 min sharing with their elbow partners.

• And/Or Discussion
o Start with a few Journal Entrys about And and Or.
o Kinesthetic And/Or Activity (Following is a possible set of conditions.)

 Tell the students to stand up if the condition is true.
 Say: If (you are a girl AND you are wearing blue) stand up.

• Find a girl that is not wearing blue and is sitting. Ask her why is she sitting if she’s a girl?
(Answer: she’s not wearing blue)

• Ask: So how many parts of the condition must be true for you to stand up if it’s an AND?
(Answer: both)

 Say: If (you are a boy OR you are wearing blue) stand up.
• Find a boy that is standing but is not wearing blue. Ask: Why are you standing if you are

NOT wearing blue? (Answer: I’m a boy)
• Ask: So how many parts of the condition must be true for you to stand up if it’s an OR? (

Answer: at least one)
• Ask: So if both parts of the condition are true for an OR, is it ok to stand? (Answer: YES!)

o Show the students the “and” and “or” blocks in Scratch.
 Emphasize how they are hexagon shaped and take two other hexagons.

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 147

o Show the students Grades Project
• Grades

o Circulate and help students with projects.
o If many students are stuck, build the “B” part of the code together as a class.
o In the last minute, have students share their solutions with their elbow partners.

• Random Lecture
o Have a few students share their journal entries about what random means.
o Ask: if I roll a pair of dice, will the numbers come out in order (2, then 3, then 4 the next roll, etc.) (

Answer: Most likely not.)
o Roll a pair of dice a few times to prove it.
o This unpredictability is called randomness.
o Randomness can make games more exciting.

 For example, how many spaces will I get to move this turn?
o Walk students through dice.sb showing them the “pick random _ to _” block.

 Explain that the numbers create the range that the random integer can fall under. The block
works inclusively. Therefore 1 to 6 will produce numbers 1,2,3,4,5,6.

• Dice
o Instruct students to finish dice.sb so that it creates a pair of dice. They can create their own look for the

dice.
o Circulate and help students with projects.
o In the last minute, have students share their solutions with their elbow partners.

Resources:

• Grades Project
• grades solution.sb
• dice.sb
• dice solution.sb

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 148

 Instructional Day: 20

Topic Description: This lesson requires students to apply their knowledge of conditionals to develop a Rock Paper
Scissors program in Scratch.

Objectives:

The students will be able to:

• Apply knowledge of conditionals to complete a Rock Paper Scissors Program.

Outline of the Lesson:

• Review of Rock Paper Scissors rules (5 minutes)
• Rock Paper Scissors discussion (10 minutes)
• Rock Paper Scissors project (40 minutes)

Student Activities:

• Review Rock Paper Scissors rules.
• Participate in Rock Paper Scissors discussion.
• Complete Rock Paper Scissors project

Teaching/Learning Strategies:

• Review of Rock Paper Scissors rules
o Lead a class discussion – students volunteer to share the rules for Rock, Paper Scissors.

• Rock Paper Scissors discussion
o Give students a tour of rps starter.sb.

 Show them how there are variables for ROCK, PAPER and SCISSORS.
• Ask why it might be easier to work with the variables instead of just using numbers?

(Answer: it makes the code easier to read)
 Show students variables for player and computer

• Ask how does the computer determine if they will choose rock, paper, or scissors?
(Answer: It randomly chooses one using “pick random 0 to 2”)

 Closely examine the computer’s “when I receive showPick” script
• Explain how the else part works if the condition of the if is false.
• Ask: why don’t you need a statement that says “if computer = scissors”? (Answer: You

asked if it was = to rock and that was false, then you asked if it was equal to paper and
that was false so the only thing left was for it to equal scissors. Hence you can just put
the “switch to costume scissors” in the else.)

 Instruct students that they only need to change the script that starts with “When I receive
determine winner” under the computer sprite. (they may change more to make the program
more fancy)

• Facilitate them in writing some pseudo code to handle all the cases for the computer
choosing ROCK.

o Create two versions, one like rps solution.sb and one like rps solution b.sb. This
way students can choose the method that they understand the most.

o Show students a working example in presentation mode (so they can’t see the blocks).
• Rock Paper Scissors project

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 149

o Circulate room and help students with projects.
o Allow students to try various approaches to solving the problem.
o If students finish, offer them extra credit for keeping score of the wins for the computer and player.

Resources:

• rps starter.sb
• rps solution.sb
• rps solution b.sb

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 150

Instructional Day: 21

Topic Description: This lesson builds on previous concepts to create a timer.

Objectives:

The students will be able to:

• Create a timer.

Outline of the Lesson:

• Review of Rock Paper Scissors solutions (10 minutes)
• Creation of a Timer (15 minutes)
• Review of Timer Solutions (5 minutes)
• Introduction of Timing Game (15 minutes)
• Timing Game theme (10 minutes)

Student Activities:

• Review Rock Paper Scissors solutions.
• Create a timer.
• Review Timer solutions.
• Choose Timing Game theme.

Teaching/Learning Strategies:

• Review of Rock Paper Scissors solutions
o Review rps solution.sb and rps solution b.sb.
o Allow students to share their own unique solutions.

• Creation of a timer
o Explain to students that they will make a timer that will count down from 10 to 0.
o Show students Timer Project.

• Review of Timer solutions
o Allow students to share their own unique solutions.
o Review timer solution a.sb and timer solution b.sb

• Introduction of Timing Game
o Have students help build example: see timing.sb.
o Review rubric: Timing Rubric.

• Timing Game theme
o Circulate room and help students pick the theme of their timing game.

Resources:

• rps solution.sb (modified version of Jesse Moya’s solution)
• rps solution b.sb (modified version of Jesse Moya’s solution)
• Timer Project
• timer solution a.sb
• timer solution b.sb
• timing.sb

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 151

 Instructional Day: 22-26

Topic Description: Students create a timing game in Scratch and participate in an Arcade Day during which they display
their games.

Objectives:

The students will be able to:

• Create a timing game.
• Assess their peers to help them gauge progress.
• Complete their rubrics and turn in their timing games.
• Prepare a presentation of a Scratch program.
• Evaluate their peers’ timing games.

Outline of the Lesson:

• Timing game (110 minutes)
• Peer Review and discussion (15 minutes)
• Completion of timing game (95 minutes)
• Arcade walk (55 minutes)

Student Activities:

• Work on Timing game.
• Participate in peer review and discussion.
• Continue working on and complete timing game.
• Participate in arcade walk.

Teaching/Learning Strategies:

• Work on timing game
o Circulate room and help students with projects.

• Peer review and discussion
o Circulate the room and make sure students understand the rubric and what they still need to accomplish

to finish their project.
• Completion of timing game

o Circulate room and help students with projects.
o Collect projects and rubrics.
o Help students prepare their presentations.

• Arcade Walk
o Have students rotate through the room playing each other’s games and giving each one a score on their

Peer Grading sheet. Teacher can use a timer to indicate the amount of time that each student has at
each computer.

o Have students vote for the top two games out of the entire class.

Resources:

• Timing Rubric
• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 152

 Instructional Day: 27

Topic Description: Investigating Games

Objectives:

The students will be able to:

• Investigate two different types of games.
• Get ideas for their final projects.

Outline of the Lesson:

• Monkey game (25 minutes)
• Review of answers (5 minutes)
• Pinball game (25 minutes)

Student Activities:

• Complete Monkey game.
• Review answers
• Complete Pinball game.

Teaching/Learning Strategies:

• Monkey game
o Have students answer the questions in monkey game.doc.
o Have Students enhance monkey game.sb.

• Review answers
o See monkey game answers.doc and monkey game solution.sb.

• Pinball game
o Have students answer questions in pinball.doc.
o Have students enhance pinball.sb.

Resources:

• Monkey Game Project
• Monkey Game Project Solutions
• monkey game solution.sb
• monkey game.sb
• Pinball Project
• Pinball Project Solutions
• Pinball.sb (An example that comes with Scratch)

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 153

 Instructional Day: 28

Topic Description: Introduce the final project.

Objectives:

The students will be able to:

• Make an appropriate choice of which final project they will do.

Outline of the Lesson:

• Review of answers for Pinball Project (5 minutes)
• Introduction of projects (15 minutes)
• Final projects (35 minutes)

Student Activities:

• Review answers for Pinball project.
• Participate in discussion of introduction to projects.
• Start Final Projects.

Teaching/Learning Strategies:

• Review of answers for Pinball project.
• Introduction of projects

o Review both sets of descriptions and rubrics.
• Final projects

o Circulate the room
 Help students decide which project to do.
 If students are making the game, tell them to start off small and add features as they go along to

ensure that they will finish.

Resources:

• Pinball Project
• Pinball Project Solutions
• Game Project Suggested Rubric
• My Community Project
• My Community Suggested Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 154

 Instructional Day: 29-32

Topic Description: Complete final projects.

Objectives:

The students will be able to:

• Incorporate all objectives in the unit into the final project.

Outline of the Lesson:

• Work on final project (110 minutes)
• Peer review and discussion (15 minutes)
• Completion of final project (40 minutes)

Student Activities:

• Work on final project.
• Participate in peer review and discussion.
• Complete final project.

Teaching/Learning Strategies:

• Work on final project
o Circulate room and help students with projects.

• Peer Review and discussion
o Pair students with someone that has a similar project if possible (communities together and games

together).
o In pairs, students take turns using a rubric to grade the other person’s project. Students should be able

to get an idea of where their grade stands now, and what else they need to do to complete their project.
o Circulate the room and make sure students understand the rubric and what they still need to accomplish

to finish their project.
• Complete final

o Circulate room and help students with projects.

Resources:

• Game Project
• My Community Project
• Game Project Suggested Rubric
• My Community Suggested Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 155

Instructional Day: 33

Topic Description: Complete final projects.

Objectives:

The students will be able to:

• Finish their KWL charts.
• Complete their rubrics and turn in their final projects.
• Prepare their presentations.

Outline of the Lesson:

• KWL chart (15 minutes)
• Completion of final projects (40 minutes)

Student Activities:

• Complete KWL chart.
• Groups take turns sharing out their L’s orally.
• Finish final projects.

Teaching/Learning Strategies:

• KWL chart
o Refresh memory on activity

 They already did the K (Know) and W (Want to learn), now they must fill in the L (Learned)
section of their chart.

 They should meet in their original groups.
o Students fill in the L portion of their chart.

• Groups take turns sharing out their L’s orally. Encourage them not to repeat anything that has already been
said.

• Completion of final projects
o Collect projects and rubrics.
o Help students prepare their presentations.

Resources:

• KWL Graphic Organizer Chart.pdf (UCLA SMP)

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 156

 Instructional Day: 34

Topic Description: Complete My Community presentations.

Objectives:

The students will be able to:

• Complete a presentation on the My Community project.

Outline of the Lesson:

• My Community Presentations (55 minutes)

Student Activities:

• Complete My Community presentations.

Teaching/Learning Strategies:

• My Community Presentations
o Have students that elected to write programs about their community take turns presenting. They will

present their community as well as explain how they created the projects.
 Help guide students by asking questions if the student does not fully explain how they wrote

their program.
o Have students in audience fill out Peer Grading.
o Have students vote for first and second place.

Resources:

• Peer Grading
• My Community Project Suggested Rubric.doc

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 157

 Instructional Day: 35

Topic Description: Complete presentations of Game projects.

Objectives:

 The students will be able to:

• Complete a presentation on the Game project.

Outline of the Lesson:

• Games Presentations (35 minutes)
• Arcade Walk (20 minutes)

Student Activities:

• Complete Games presentations
• Participate in an arcade walk.

Teaching/Learning Strategies:

• Games Presentations
o Have students take turns presenting their games to the rest of the class. They must walk the class

through how they created their game.
 Help guide students by asking questions if the student does not fully explain how they created

their game.
o Have students in audience fill out Peer Grading.

• Arcade Walk
o Have students rotate through and play the games that were presented

 For example, teacher might allocate 1 minute per game and have the students rotate to the next
one.

o Have students vote for first and second place.

Resources:

• Peer Grading
• Game Project Suggested Rubric

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 5 Page 158

Activities

Moving Project

There are basically 3 ways to move sprites in Scratch. Try the file moving.sb and answer the questions below:

1. Click the green flag. What do the three animals do?
2. Look at the scripts for each of the 3 sprites. What 3 blocks do all three sprites use?
3. What blocks does the cat use to move?
4. What block does the dog use to move?
5. What block does the monkey use to move?

6. Describe in your own words how the move block works.

7. Describe in your own words how the go to xy block works.

8. Describe in your own words how the glide block works.
9. Some of the blocks require x: and y: coordinates. Place the mouse over the white window and look at the

mouse x: and mouse y: numbers underneath the bottom. How are the x: and y: coordinates determined in
Scratch?

10. Use what you’ve learned about moving to get the cat to run the bases (as realistically as possible – bases are run
counter clockwise) in baseball.sb. Make sure that when you click the green flag, the cat starts at home plate
again.

11. Extra Credit: Make the cat change costumes so that it looks like it is running as it circles the bases.

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 9 Page 159

Scratch Broadcast Role Play

This is meant to be performed in front of a white board. This can also be done using more elaborate props. Each
character’s parts are broken down by events that are broadcast out to everyone. Select characters and give them their
parts of the scripts. There is also a script so that observers can see the flow of the entire program.

Useful props: sunglasses, a basketball, and a bag of popcorn or chips

Characters:

The Cat: our main character

The Crab:

The Opponent:

The Date:

Stage: in charge of drawing the background of the scene on the board

Scripts for the individual actors:

The Cat

when GREEN FLAG clicked:

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 9 Page 160

 switch to costume: sunglasses

 say: Hello!

 say: I’m going to tell you about my summer.

 say: I spent some time at the beach.

 broadcast BASKETBALL SCENE (tell everyone it’s time for the next scene)

when I receive BASKETBALL SCENE:

 switch to costume: basketball

 say: I played lots of ball.

broadcast MOVIE SCENE (tell everyone it’s time for the next scene)

when I receive MOVIE SCENE:

switch to costume: bag of popcorn or chips

 say: I went on a date. We went to the movies.

The Crab

when GREEN FLAG clicked:

show: (Go up on stage. You might want to pose like a crab by making your hands into claws.)

when I receive BASKETBALL SCENE:

 hide: (Disappear from the stage)

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 9 Page 161

The Opponent

when GREEN FLAG clicked:

 hide: (Disappear from the stage)

when I receive BASKETBALL SCENE:

show: (Go up on stage. You might want to pose like a basketball player.)

when I receive MOVIE SCENE:

 hide: (Disappear from the stage)

The Date

when GREEN FLAG clicked:

 hide: (Disappear from the stage)

when I receive MOVIE SCENE:

show: (Go up on stage.)

wait 2 secs:

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 9 Page 162

say: I can’t wait to see Get Smart. Would you believe I spent my entire check from work on these tickets? No? Would
you believe that it cost me $15 for both using my student discount? No? How about a stick of gum and a nickel I found
on the floor?

Stage

when GREEN FLAG clicked:

Switch to background BEACH: (Draw a picture of the beach on the white board. A sun in one corner and a wavy line for
sand is fine.)

when I receive BASKETBALL SCENE:

Switch to background BASKETBALL COURT: (Draw a picture of a basketball court. Drawing the backboard and rim should
be fine.)

when I receive MOVIE SCENE:

Switch to background MOVIES: (Draw a picture of a movie theater. Drawing a sign that says movies should be ok.)

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 9 Page 163

Summer Story Project

Finishing a story about what the cat did over summer. Answer questions 1,2, and 6 on paper.

1. Open the file summer.sb. Click the flag. What does it do so far?
2. Click on the cat and look at his script. What does the cat broadcast in the last block?
3. We’ll make a basketball scene (a second script)

a. Drag a block into the script section.
b. Click the empty box and choose “basketball scene”.

c. Under looks, drag a block into your script
d. Change costume1 to costume3
e. Give the cat something to say about playing basketball over summer.

f. Drag a block to the end of this second script.
g. Click the empty box.
h. Choose new
i. Type in movie scene and hit ok.

4. We’ll make the background change as well.
a. Click on the stage
b. Choose scripts

c. Drag a block into the script section.
d. Click the empty box and choose “basketball scene”.

e. Under looks, drag a block into your script
f. Change background1 to basketball-court

5. Now add a third scene about going to the movies..
6. Summarize how you can use broadcast to change scenes in a story. Get your work checked off.
7. Now add in another character into each scene like in the role play (i.e. The Crab, The Opponent and The Date).

These characters should show and hide.
8. Feel free to add in additional scenes.

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 9 Page 164

Age Project

You are going to finish a program that will tell you what you can do depending on your age. Use the slider to set the
age.

1. Currently, it only does the first condition. Your task is to finish the program so that the cat will tell you the rest:

 If you are older than 2 "you don't need diapers"

 If you are older than 15 "you can drive"

 If you are older than 16 "you can see an R rated movie"

 If you are older than 17 "you can vote"

 If you are older than 20 "you can gamble"

 If you are older than 24 "you can rent a car"

 If you are older than 49 "you can retire"

2. If the age is less than 3, make the code tell you:
"Sorry, you are not old enough for anything yet"

3. Feel free to add more conditions.

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 18 Page 165

Grades Project

Your task is to make a Scratch program that will tell you the letter grade based on the percentage.

1. Create a variable grade.
2. Double click grade to display the scroll bar.
3. When the green flag is clicked, the program should look at the value of grade and the sprite should respond with

a letter as follows:
A: greater than 90

 B: greater than 79 and less than 90

 C: greater than 69 and less than 80

 D: greater than 59 and less than 70

 F: less than 60

At Crazy High School, students only qualify for tutoring if they have a B OR a D. After it says the grade, make your
program say “You qualify for tutoring” if the grade is a B or D.

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 21 Page 166

Timer Project

How to make a timer in Scratch:

1. create a variable called timer.
2. when the flag is clicked, initialize the timer to 10.
3. continually, wait 1 second and check if the timer = 0

a. output the current time either with a sprite or just show the variable
b. If the timer = 0 make either the background or a huge sprite say “Time’s Up”

4. When the flag is clicked, everything should start over.
5. Be creative as to what you want your program to look like.
6. Make sure the timer stops at 0 and does not continue into negatives.

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 27 Page 167

Monkey Game Project

Answer these questions on paper:

1. Play the game by using the arrow keys. What blocks make the monkey respond to the keys?
2. Does the banana always appear in the same place?
3. What blocks do you think decide what x and y the banana should change to?
4. What are the names of the orange blocks under Variables?
5. What block(s) are used to change the score?

Make these changes to the file:

6. Customize the sprites in the game (make the characters be who you want).
7. Add another sprite that gives you 2 points if you touch it.
8. Get the game to stop at 10 points or more by telling you that you win.

 Version 2.0

Exploring Computer Science—Unit 4: Activity Day 28 Page 168

Pinball Project

Open pinball.sb and answer the questions below on paper:

1. Look at the scripts for the pinball. How did the author simulate gravity?
2. How does the ball know when to “bounce” off of something?
3. Does the ball always bounce the same way when it hits something?
4. How do you think the ball determines which direction to bounce?
5. What’s the purpose of the purple line at the very bottom of the game?
6. Modify the game to keep track of points and get it checked off. Write down what changes you made.
7. What other features do think would make this game better?

 Version 2.0

Exploring Computer Science—Unit 4: Rubric Day 1 Page 169

Rubrics and Solutions

Name Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

Have a separate sprite for each letter of your name. 5

Have at least 3 different interesting behaviors for the letters in your name. 5

All the letters have a behavior 4

Use the “when green flag clicked” block 3

Use the “forever” block 3

Extra Credit

Have your name reinitialize itself when the green flag is clicked. In other
words, all the letters will start off in the right location facing the correct
way.

2

TOTAL: 20

 Version 2.0

Exploring Computer Science—Unit 4: Rubric Day 4 Page 170

Dialogue Rubric

Name: _______________________

Do you have? Points Possible Yes No Points Earned

Have 2 or more sprites talking in dialogue. 4

Have 3 or more sprites talking in dialogue. 5

All the sprites are polite and they take turns talking 4

Each sprite says at least 3 things. 3

The conversation starts “when green flag clicked” 4

Extra Credit

Have 4 or more sprites talking in dialogue 2

TOTAL: 20

 Version 2.0

Exploring Computer Science—Unit 4: Solution Day 5 Page 171

Moving Project Solutions

There are basically 3 ways to move sprites in Scratch. Try the file moving.sb and answer the questions below:

12. Click the green flag. What do the three animals do?
They move across the screen.

13. Look at the scripts for each of the 3 sprites. What 3 blocks do all three sprites use?
When green flag clicked, go to x:_ y:_, and wait _ sec

14. What blocks does the cat use to move?
Repeat _ and move _ steps

15. What block does the dog use to move?
go to x:_ y:_

16. What block does the monkey use to move?
glide

17. Describe in your own words how the move block works.
Move the sprite n steps. If n is positive, the direction will be to the right.

18. Describe in your own words how the go to xy block works.
Move immediately to that (x,y) position.

19. Describe in your own words how the glide block works.
Take n seconds to move from my current position to (x,y).

20. Some of the blocks require x: and y: coordinates. Place the mouse over the white window and look at
the mouse x: and mouse y: numbers underneath the bottom. How are the x: and y: coordinates
determined in Scratch?

It is just like the 2 dimensional x y graphs from Algebra. (0,0) is in the exact middle of the stage.

21. Use what you’ve learned about moving to get the cat to run the bases (as realistically as possible – bases
are run counter clockwise) in baseball.sb. Make sure that when you click the green flag, the cat starts at
home plate again.

22. Extra Credit: Make the cat change costumes so that it looks like it is running as it circles the bases.

 Version 2.0

Exploring Computer Science—Unit 4: Rubric Day 7 Page 172

Alphabet Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

Have at least 10 different letters. 4

Have a theme for your letter game (i.e. animals, food, etc.) 3

Sprites change costume when clicked on. 4

Sprites change costume when letter is typed on keyboard 4

Use the “say _ for _ sec” to output what the letter stands for (i.e. “E is for
Elephant”)

3

Sprites all turn to letters when the “when green flag clicked” 2

Extra Credit

Use a microphone to record sounds for all the letters and play the sound
when the letter is clicked or typed (i.e. “E is for Elephant”)

2

TOTAL: 20

 Version 2.0

Exploring Computer Science—Unit 4: Solution Day 9 Page 173

Scratch Broadcast Role Play Interwoven

 when GREEN FLAG
clicked:

when I receive BASKETBALL
SCENE:

When I receive MOVIE
SCENE:

The Cat

switch to costume:
sunglasses

say: Hello!

say: I’m going to tell
you about my summer.

say: I spent some time
at the beach.

broadcast BASKETBALL
SCENE

switch to costume: basketball

say: I played lots of ball.

broadcast MOVIE SCENE

switch to costume: bag of
popcorn or chips

say: I went on a date. We
went to the movies.

The Crab show: (Go up on stage.
Pose like a crab.)

hide: (Disappear from the
stage)

The Opponent

hide: (Disappear from
the stage)

show: (Go up on stage. Pose
like a basketball player.)

hide: (Disappear from the
stage)

The Date

hide: (Disappear from
the stage)

 show: (Go up on stage.)

wait 2 secs:

say: I can’t wait to see Get
Smart. Would you believe I
spent my entire check from
work on these tickets? No?
Would you believe that it
cost me $15 for both using
my student discount? No?
How about a stick of gum
and a nickel I found on the
floor?

Stage

Switch to background
BEACH: (Draw the
beach.)

Switch to background
BASKETBALL COURT: (Draw a
basketball court.)

Switch to background
MOVIES: (Draw a movie
theater.)

 Version 2.0

Exploring Computer Science—Unit 4: Rubric Day 9 Page 174

Summer Story Rubric

Name: _______________________

Do you have? Points Possible Yes No Points Earned

Answer question 1, 2 and 6 5

Add in the second scene (basketball) 5

Add in the third scene (movies) 5

Add in additional characters into each scene that show and hide 5

Extra Credit

Add in additional scenes 1

TOTAL: 20

 Version 2.0

Exploring Computer Science—Unit 4: Rubric Day 11 Page 175

 Story Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

The Story

Have at least 3 scenes 10

Have at least 4 scenes 5

Have at least 3 different sprites 10

Have at least 8 say or think boxes 10

Animate the movement of your characters 5

Use broadcast to change scenes in your story 10

Have the characters take turns speaking to each other 5

Have at least one conversation between characters 5

Have a title scene with your name on it 10

Story initializes itself when the flag is clicked 4

The entire story plays once you click the flag 4

The Presentation

Explain an example from your program of how events (broadcast) were
used to transition from one scene to another.

10

Peer Grading 12

Extra Credit

Have the best project as voted on by peers Up to 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 4: Rubric Day 22 Page 176

Timing Game Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

The Game

Have 3 or more “timed” sprites 10

Have 4 or more “timed” sprites 5

Use a timer for your game 5

Keep score (points) 10

Give the user feedback as to how well they timed their button
pressing

10

Have a help screen with directions 5

Does the game reset when the flag is clicked 10

Does the game stop when it is over 5

Does the game notify the user when it is over 10

Does the game keep track of how many “perfects” in a row 5

Does the game get harder as you keep playing 5

Peer Grading 20

Extra Credit

Have the best project as voted on by peers Up to 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 4: Solution Day 27 Page 177

Monkey Game Project Solutions

Answer these questions on paper:

9. Play the game by using the arrow keys. What blocks make the monkey respond to the keys? ”when _
key pressed”

10. Does the banana always appear in the same place? No, it’s random.
11. What blocks do you think decide what x and y the banana should change to?

“set x to _” and “set y to _” combined with “pick random _ to _”

12. What are the names of the orange blocks under Variables? “change points by _”, “set points to _”, and
“points”

13. What block(s) are used to change the score? “set points to 0” when the green flag is clicked and “change
points by 1” when the monkey touches the banana.

Make these changes to the file: see monkey game solution.sb

14. Customize the sprites in the game (make the characters be who you want).
15. Add another sprite that gives you 2 points if you touch it.
16. Get the game to stop at 10 points or more by telling you that you win.

 Version 2.0

Exploring Computer Science—Unit 4: Solution Day 27 Page 178

Pinball Project Solutions

Open pinball.sb and answer the questions below on paper:

8. Look at the scripts for the pinball. How did the author simulate gravity? There is a variable called
gravity that is constantly affecting the direction of the ball.

9. How does the ball know when to “bounce” off of something?
If it touches something that is green, orange or red, it will “bounce” off of it.

10. Does the ball always bounce the same way when it hits something?
No, the amount of the turn is random.

11. How do you think the ball determines which direction to bounce?
It uses “pick random _ to _” to vary the amount of the turn.

12. What’s the purpose of the purple line at the very bottom of the game?
If the ball touches purple, you lose.

13. Modify the game to keep track of points and get it checked off. Write down what changes you made.
See pinball solution.sb

14. What other features do think would make this game better?
Answers will vary.

 Version 2.0

 Exploring Computer Science—Unit 4: Peer Grading Sheet Page 179

Name_____________________Computer #____

VOTING

From ALL the projects, choose

1ST Place________

2nd Place________

PEER GRADING

For EACH of the following give the student a score from 1 to 4.

Use the rubric online to decide the score.

4 – Student has everything on the rubric: A

3 – Student has most things on the rubric: B

2 – Student has some things on the rubric: C

1 – Student turned in project, but is missing many items: D

Student Name Score (1-4) Student Name Score (1-4) Student Name Score (1-4)

 Version 2.0

 Exploring Computer Science—Unit 4: Peer Grading Sheet Page 180

 Version 2.0

 Exploring Computer Science—Unit 4: Final Project Page 181

Final Project

Choose one of the following:

My Community Project

You will use Scratch to make a project about your community. You will use blocks like broadcast in your project.
You should have at least three different pages or scenes in this project.

Decide on one positive thing that you want to highlight and one thing you want to improve about your
community. Then find at least one statistic to backup your conclusions. Also include at least one personal
comment/recording and one picture. Lastly, you should have at least one observation from someone else in the
class about the topic – this means you will have to ask them what they think and either record it or write it
down.

Use these websites to find statistics about Los Angeles and California:

For Education Data go to:

http://dq.cde.ca.gov/dataquest/

http://www.ed-data.k12.ca.us/welcome.asp

For information about other concerns in LA, like hunger and homelessness, go to:

http://www.unitedwayla.org/GETINFORMED/RR/Pages/default.aspx

http://www.unitedwayla.org/getinformed/rr/datalinks/Pages/default.aspx

For information about health and health care go to (if you need a password, let me know):

http://www.chis.ucla.edu/

For Los Angeles Sponsored web sites go to:

http://www.ci.la.ca.us/

http://dq.cde.ca.gov/dataquest/�
http://www.ed-data.k12.ca.us/welcome.asp�
http://www.unitedwayla.org/GETINFORMED/RR/Pages/default.aspx�
http://www.unitedwayla.org/getinformed/rr/datalinks/Pages/default.aspx�
http://www.chis.ucla.edu/�
http://www.ci.la.ca.us/�

 Version 2.0

 Exploring Computer Science—Unit 4: Final Project Page 182

Create A Game Project

Create your own game that meets the specifications outlined in the rubric. Be creative!

 Version 2.0

 Exploring Computer Science—Unit 4: Final Project Suggested Rubric Page 183

Community Project Suggested Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

The Contents

3 or more scenes 10

1 or more positive things in the community that you want to
highlight

5

1 or more things in the community that you would like to improve 5

Statistics to back up your conclusions 5

A personal comment/recording 5

A personal picture 5

A comment/recording from someone else in the class 5

The Program

Use broadcast 10

Scenes only show sprites that are supposed to be in that scene 10

Program starts and restarts when green flag is clicked 10

The Presentation

Show and explain the contents of each scene in your project 9

Explain how each scene changes (how the program works) 9

Peer Grading 12

Extra Credit

 Version 2.0

 Exploring Computer Science—Unit 4: Final Project Suggested Rubric Page 184

Have the best project as voted on by peers Up to 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 4: Introduction to Programming Page 185

Game Project Suggested Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

The Game

Let the player know if they win 10

Keep score 10

Have a timer 10

Have a help screen with directions 10

The game resets when the green flag is clicked 10

The game stops when it is over 10

Does the game get harder as you keep playing (more than one level) 10

The Presentation

Brief description of the game explaining how it was programmed using
Scratch (what blocks you used, etc.)

10

Peer Grading 20

Extra Credit

Have the best project as voted on by peers Up to 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 186

Unit 5:

Robotics

© Computer Science Equity Alliance, 2009

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 187

Daily Overview Chart

Instructional Day Topic

1 What is a robot? Identify the criteria that make an item a robot

2-3 Evaluate robot body designs and create algorithms to control robot
behavior.

4 Set up Lego Mindstorms kit.

5 Build robot base.

6-7 Introduce the features of NXT Brick—the “brain” of the robot.

8-9 Introduce the features of the Mindstorms NXT software.

10-14 Program the robot using the Mindstorm Robot Educator Software
tutorials.

15 Introduce RoboCup real life robotic competition and write instructions for
tic-tac-toe.

16 RoboTic-Tac-Toe Tournament and introduction to RoboCup Junior Dance
Tournament.

17-20 Build, program, and present a dancing robot.

21-25 Build program and present a rescue robot.

26-35 Final project: Design, build and program a robot that solves a stated
problem.

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 188

Daily Lesson Plans

Instructional Day: 1

Topic Description: “What is a Robot”? Identify the criteria that make an item a robot.

Objectives:

Students will be able to:

• List and explain the criteria that describe a robot.
• Determine if something is a robot, using the criteria.

Outline of the Lesson:

• Brainstorm about robot definition (10 minutes)

• “Kismet” video (5 minutes)

• Elements of a robot (10 minutes)

• Am I a Robot? Activity 1(15 minutes)

• Student group work—Are we Robots? (15 minutes)

Student Activities:

• Brainstorm what they think of when they hear “robot” then identify common features
of robots.

• Participate in whole class activity determining if common items are robots.

• Work in small groups to complete “Are we Robots?” activity.

Teaching/Learning Strategies:

• Brainstorm: Ask students what they think of when they hear “robot”. Write responses
on the board. Responses may include the following:

o Movie and TV robots such as Wall-E, iRobot, Robots, Rosie from The Jetsons
o Modern industrial robots such as those involved in assembly-line factory work
o Mars Rovers
o iRobot robots, both the vacuum cleaner and the robots built for military use,

other robots such as bomb detection and detonation

• View the video “Kismet” from Teachers Domain.

• Ask students if they can identify common features of the robots they have identified.
What do all those robots have in common? What are robots good for? What are robots
bad at? (Answers: robots are good at dangerous or repetitive tasks such as recovering
bombs, search and rescue in dangerous conditions, factory work. They are replaceable,

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 189

unlike humans, and don’t get bored or make mistakes when doing the same thing over
and over. They are bad at things that require judgment or human-like interaction such
as recognizing when there is a problem or walking and seeing like humans.)

• Use the What is a Robot? handout to guide a discussion of robots.

• Hand out copies of Am I a Robot? activity, with the pictures of a basic stove and a fancy
microwave. Check with students to make sure they recognize the items in the two
pictures.
Based on student input, on the board put up the five criteria for whether something is a
robot: body, input, program, output, behavior. Explain to the class that as a group you
will figure out whether each of the two machines shown is a robot. Go through the
stove first. Ask students to figure out whether the stove meets the criteria for a robot:
Body – yes
Input – yes (dials to turn the burners off and on, set oven temp)
Programmable – no (no way to set it. If it had a “time bake” or “delay” feature, it would
be yes)
Output – yes (heat!)
Behavior – yes (cooks food)

Next go through the microwave in a similar way:
Body – yes
Input – yes (buttons)
Programmable – yes (buttons set time, set mode, microwave can be programmed by the
user, for example “cook 3 minutes 50% power, hold 1 minute, cook 1 minute 90%
power)
Output – yes (microwaves in chamber, light comes on)
Behavior – yes (cooks food, makes popcorn, boils water…)

• Hand out copies of Are we Robots? activity two. Explain the directions. Either have
students brainstorm machines as a group to complete the table or have them think of
machines on their own. Have students work in small groups to complete the table,
determining whether each machine is a robot according to the criteria.

• Optional Extra Credit – have students research Isaac Asimov’s three Laws of Robotics.
What are the three laws? What is law Zero? Why did he come up with these laws and
how do they think these laws affect our thinking about robots today?
Law Zero: A robot may not injure humanity, or through inaction, allow humanity to
come to harm
Law One: A robot may not injure a human being, or through inaction, allow a human
being to come to harm
Law Two: A robot must obey the orders given to it by human beings, except where such
orders conflict with Law One
Law Three: A robot must protect its own existence, as long as such protection does not

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 190

conflict with Laws One and Two.

Resources:

• What is a Robot? Handout (Based on handouts from The Big Picture “Robotics Teacher
Guide 1” (Item #29852 from Lego Dacta))

• Am I a Robot? Activity

• Are we Robots? Activity (Based on handouts from The Big Picture, “Robotics Teacher
Guide 1” (Item #29852 from Lego Dacta))

• http://www.teachersdomain.org/resources/eng06/sci/engin/design/lp_robot/index.ht
ml specifically
http://www.teachersdomain.org/resources/eng06/sci/engin/design/kismet/index.html
(may require free registration)

• Asimov’s three laws of robotics: http://en.wikipedia.org/wiki/Three_Laws_of_Robotics,
http://www.asimovonline.com/asimov_FAQ.html#series13 , essay at
http://www.sfwriter.com/rmasilaw.htm

http://www.teachersdomain.org/resources/eng06/sci/engin/design/lp_robot/index.html�
http://www.teachersdomain.org/resources/eng06/sci/engin/design/lp_robot/index.html�
http://www.teachersdomain.org/resources/eng06/sci/engin/design/kismet/index.html�
http://en.wikipedia.org/wiki/Three_Laws_of_Robotics�
http://www.asimovonline.com/asimov_FAQ.html#series13�
http://www.sfwriter.com/rmasilaw.htm�

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 191

Instructional Days: 2-3

Topic Description: Evaluate robot body designs and create algorithms to control robot
behavior.

Objectives:

Students will be able to:

• Evaluate how the design of a robot’s body affects its behavior.

• Create an algorithm to direct a human “robot” from one part of the room to another.

Outline of the Lesson:

• “Are we Robots” activity (15 minutes)

• The effect of changing design (20 minutes)

• Student group work—Can a robot tie your shoes? (40 minutes)

• Student group work—Walk like a robot (35 minutes)

Student Activities:

• Participate in discussion of “Are we robots” activity.

• Discuss how changing the design of an item affects the item.

• Students work in pairs to try tying a shoe in several robot-esque situations including
with closed eyes, with tongue depressors, pliers, and with another person.

• Students work in small groups to direct a person to move along a path given a limited
list of commands.

Teaching/Learning Strategies:

• Revisit “Are we robots” activity. Go through the list of items, asking students to indicate
if they thought each item was a robot or not. Occasionally, especially if there is
disagreement, ask students to defend their answer.

• Discuss the effect of changing design. (This can be done as a warm up writing exercise
with students sharing their responses.)

o Ask students, “If you could change the body of the printer [or another device in
the room] what would you change? How would that affect other things like the
behavior or function of the printer, price, cost to build, or popularity? Have
students share their ideas.

• Explain that there are limits to what robots can do because robots are limited by their
bodies. For example, it is difficult to create a robotic hand that can grasp small or
delicate items – it would require many motors (simulating all the muscles in the hand)
and many sensors to detect the item (simulating the neurons in the hand).

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 192

o Make sure each pair of students has a shoe that can be tied.
o Direct students to first try tying the shoe blindfolded or with eyes shut. Discuss

how it went – was it hard? What was hard about it? How was it like a robot
tying the shoe?

o Direct students to tie the shoe with heavy gloves on. Discuss the experience.
How was it like a robot tying the shoe? What made it hard?

o Direct students to tie the shoe with tongue depressors taped onto thumbs and
forefingers or just holding tongue depressors. Discuss the experience. How was
it like a robot tying the shoe? What made it hard?

o Direct students to tie the shoe with pliers. How was it like a robot tying the
shoe? What made it hard?

o Direct the students to work with their partner to tie the shoes using the pliers,
each person holding one pair. Discuss the experience. How was it like two
robots working together? What made it hard?

• Activity: Walk like a robot
o Choose one student to be a “robot” or tell students that you will be the robot.

Choose a starting point and an ending point between which the “robot” must
navigate. Make sure the path is not direct.

o Tell the class that they must direct the robot from the starting point to the
ending point using only five commands:
 Turn left 90 deg.
 Turn right 90 deg.
 Take a step forward with the left foot.
 Take a step forward with the right foot.
 Stop.

o Students can take turns or work as a group. The robot should only follow those
five commands and not respond to other commands. Tell students to be careful
with the robot and not walk it into walls or barriers. (The robot should stop
before it hits a barrier such as a wall.).

o At some point, remind students about loops. They can tell the robot to repeat a
command or a block of commands such as “repeat: take a step forward with the
left foot, take a step forward with the right foot until you are at the wall”

o Conclude by pointing out that these kinds of commands are what they will be
programming their robots to run.

Resources:

• Activity: Can a robot tie your shoes? (From
www.thetech.org/robotics/activities/page05.html)

• Materials: shoes that tie, tongue depressors, masking tape, heavy gloves, pairs of pliers,
blind folds

http://www.thetech.org/robotics/activities/page05.html�

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 193

• Walk like a robot activity from Lego Materials.

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 194

Instructional Day: 4

Topic Description: Set up lego trays.

Objectives:

Students will be able to

• Distinguish between the lego parts for building a robot.

Outline of the Lesson:

• Distribution of lego kits. (10 minutes)

• Separation of lego parts into the appropriate compartments of the trays. (45 minutes)

Student Activities:

• Student groups work together to set up their lego kits for use in building robots.

Teaching/Learning Strategies:

• Give each pair (or group of three) a Lego Mindstorms kit. Point out the picture that
shows where each item should be placed in the tray.

• Ask students to set up their trays so that they will be ready for use in building robots.

Resources:

• Lego Mindstorms kit

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 195

Instructional Day: 5

Topic Description: Build the base of the robot.

Objectives:

Students will be able to

• Assemble the base of the robot.

Outline of the Lesson:

• Explanation of Lego Mindstorms manual (10 minutes)

• Assembly of base of robot (45 minutes)

Student Activities:

• Student groups assemble the base of the robot.

Teaching/Learning Strategies:

• Have students get out their kits and the manual that comes with the kit. Go through
step 1 on p. 8 with the students to make sure they understand the format of the
manual.

• Ask student groups to assemble the base of their robot according to the instructions on
p. 8-21. (Batteries should be charged in advance.)

Resources:

• Lego Mindstorms manual

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 196

Instructional Days: 6-7

Topic Description: Introduce the features of the NXT Brick—the “brain” of the robot.

Objectives:

Students will be able to

• Distinguish between the parts of the NXT brick.

• Hook up input and output devices correctly.

• Use built-in NXT Brickprograms.

Outline of the Lesson:

• Observation of the NXT brick (20 minutes)

• Plug in sensors, motors, and light, and run ‘View’ programs (30 minutes)

• Try Me’ built in programs (40 minutes)

• NXT Brick programs (20 minutes)

Student Activities:

• Articulate what they observe about the the NXT brick while the teacher explains each
part.

• Test sensor data using the ‘View’ programs and report observations.

• Run ‘try me’ programs and describe what the programs do.

Teaching/Learning Strategies:

• Have students get out their robot base, sensors, lights, motors, and three wheels.
Explain that the NXT is the brain of the robot. Have students describe the parts they see
and make sure the following parts get identified. (The NXT User Guide pages 9-12 can
be used as support.)

o Ports number 1-4: these are input ports. You use wires to plug sensors into the
NXT brick. There are four kinds of sensors: touch sensors (detect
touch/obstacles), sound sensor (detect the sound levels), light sensor (detects
light level), ultrasonic sensor (detects movement and distance to an object).

o Ports A-C: these are output ports. You use wires to connect devices for output.
The devices are lamps and motors. The output is that the light can go on or off
and that the motor can turn or stop turning.

o Buttons:
Orange button: On/Enter
Light grey arrows: Navigation, left and right

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 197

Dark Grey button: Clear/Go back. Keep pressing this to turn off until
prompt, then hit orange

o Lines in the right side: speaker. This is where noise comes out of the robot.
o If the rechargeable battery is in, there will be a power plug and LCD lights.

• Tell students to turn on the robot by pressing the orange button. What happens? (It
makes a happy little song. LOUD.) What do they see now?

o NXT at the top – name of the brick. Can be changed in the software
o Battery level top right
o Running icon – next to the battery icon. As long as it is spinning, the NXT is

turned on and working correctly. If it freezes, the NXT has frozen and must be
reset.

o There are three icons on the screen. The one that is highlighted by default looks
like two floppy disks and has the label above “My Files”. If they start hitting
buttons, they can scroll through several menu options by using the arrow keys
or go into My Files by hitting the orange button. The menu options are:
 My Files – where programs will be stored.
 NXT Program – allows you to build small programs using only the NXT

without the need for a computer.
 View – you can do a quick test of your sensors and motors and see the

current data for each. You have to select the test you want to do and
which port the sensor or motor is on. Only one test can be run at a time.
The data will display on the screen.

 Bluetooth – you can set a wireless connection between the NXT and
other Bluetooth devices including other NXTs, phones, and computers.

 Settings – you can change settings such as the speaker volume and the
sleep time.

 Try Me – built-in program.s
o Explain that in order for the robot to really do anything, you have to hook up

input and output devices. Ask students to try to identify the devices in the kit.
Make sure they can identify the touch sensor, sound sensor, light sensor,
ultrasonic sensor, servo motor and lamps. Reinforce that the sensors are all
input devices and the motors and lamps are output devices.

• Demonstrate and have students carefully plug the devices into the NXT. Sensors can be
plugged into any input port numbered 1-4 but these default settings are used for the
test and sample programs. See pages 5-6 and 9 of the NXT User Guide for more
information. Make sure students know to support the weight of the devices and the NXT
brick without pulling on the wires.

 Port 1: Touch sensor
 Port 2: Sound Sensor
 Port 3: Light Sensor

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 198

 Port 4: Ultrasonic Sensor.
 Port A: Light
 Port B & C: Servo motor

• Have students navigate to the View menu. They should test each of the sensors and see
what the displays do. Make sure they also use the Motor rotations and motor degrees
program. See NXT User Guide pages 23-33 for more information. After a few minutes
with students experimenting, ask what they noticed. What kind of data does each of the
sensors provide? How could a robot use this in a program?

• Have students navigate to the Try Me menu by using the dark gray button to move up
the menus and using the light gray arrows and orange button to enter the Try Me menu.

o Select one of the programs and have all the students try it. Once they have
tested it, ask them what it did. See if they can flowchart what the program does.
 Try sound – moves the motors faster as more sound is detected.
 Try touch – changes display and makes noise when button is touched.
 Try light – makes noise based on how much light is detected.
 Try ultrasonic – changes noise based on distance detected.
 Try motor – changes sound based on motion of motor on port A.

• Finally, have students navigate to the Program menu and follow the directions in the
Lego Mindstorms manual on p. 22-45, trying the programs indicated. They should then
test the programs and make sure each one works as expected. (Also see the NXT User
guide pages 15-16 for more information.)

Resources:

NXT User Guide

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 199

Instructional Days: 8-9

Topic Description: Introduce the features of the Mindstorms NXT Software.

Objectives:

The students will be able to

• Recognize the parts of the Mindstorms NXT software.

• Explain the different types of icons in the Common Palette and how to use them.

• Explain the different types of icons in the Complete Palette and how to use them.

Outline of the Lesson:

• Review of Program activity from Day 7 (20 minutes)

• Interface: the parts of the Mindstorms NXT software (10 minutes)

• A simple program from the common palette (30 minutes)

• A simple program from the complete palette (40 minutes)

• How to use the tutorials (10 minutes)

Student Activities:

• Discuss how the programs were created in the NXT brick and how they behaved
compared to expectations.

• Listen to explanation of Mindstorms NXT software and respond to questions.

• Give ideas to teacher as s/he writes small programs in the software.

• Listen to explanation of how to use the tutorials.

Teaching/Learning Strategies:

• Ask students what they programmed the robot to do. Get several answers. Did it do
what they expected? Why or why not? Would it be a good idea to use the NXT Program
interface to write all their programs? Why not? (It can only take 5 commands in a
program)

• Projecting the teacher’s screen, launch the Mindstorms NXT software. Show the
students where the tutorials are in the Robot Educator section and how to open a new
program. Using the User Guide pages 48-49, describe all the parts of the interface.

• With student input, use the common palette to build a small program. Ideally, use a
variety of the blocks of the common palette, explaining what each one does as you use
it. For example, if you wanted to build a program that told the robot to wait until the
touch sensor was touched, then move forward for one rotation then listen and if a loud
sound occurs, then display a smiley face and play a sound otherwise move forward, it
would look like this:

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 200

• Save the program and download it to an NXT brick. Make sure the brick is set up to do

the actions – have one built with the driving base and any necessary sensors.
Demonstrate the running of the program.

• Modify the program and download it again. Try to make mistakes during this period and
show how to debug the program by frequently testing it, downloading extra blocks, and
also making mistakes such as having disconnected blocks. During this part have
students try to work with the software themselves and follow along with you.

• Open a new program and switch to the Complete Palette. Show the differences in the
two palettes. With student input, write a new program using the blocks of the complete
palette. Show the differences in controlling the program. Make sure to show how to
wire things in the data hub. For example, a program that runs the motors for a random

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 201

amount of time would look like this:

• Make sure to make mistakes and demonstrate how to solve problems with the software

such as mis-wiring ports. Have students try these features at their seats as you do it.
Point out the similarities between programming the NXT software and what they did in
the last unit with Scratch.

• Tell students that the next five days will be spent going through the tutorials in order to
learn how to build and program the NXT system.

Resources:

• NXT Robot Educator

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 202

Instructional Days: 10-14

Topic Description: Program the robot using the Mindstorm Robot Educator Software tutorials.

Objectives:

The students will be able to:

• Use the building blocks of the common palette to program the robot.

• Build robots that can execute the functions programmed through the Robot Educator
Software.

• Program the robot using some or all of the complete palette of blocks.

Outline of the Lesson:

• Description of the assessment model (10 minutes)

• How to use the tutorials (10 minutes)

• Build and program robots according to tutorials (255 minutes)

Student Activities:

• In groups of 2-4, students follow tutorials to build and program small robots.

Teaching/Learning Strategies:

• Explain assessment model for tutorials. (Recommended: observe some but not all
robots, such as those for tutorials 8, 16, and 20 in the common palette along with
several from the complete palette; look at robot construction and the program as well
as execution to determine grade.)

• All students should complete the tutorials for the common palette before moving on to
the complete palette. It will be helpful for the future projects if students complete
most, if not all, of the tutorials for the complete palette as well.

• Circulate throughout class to answer questions, help troubleshoot, and assess robots.

Resources:

• NXT User guide pages 50-53 explain the tutorials

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 203

Instructional Day: 15

Topic Description: Introduce RoboCup real life robotic competition and write instructions for
tic-tac-toe.

Objectives:

Students will be able to

• Explain how a sequence of game moves can be expressed in simple statements.

• Describe the RoboCup tournament and examine how robots have been programmed to
play soccer.

• Develop if-then statements and use Boolean operators to direct a robot to play tic-tac-
toe.

Outline of the Lesson:

• Tic-tac-toe (10 minutes)

• “Robot Competitors Meet on a Soccer Field of Dreams” (25 minutes)

• Instructions for a “robot” to play tic-tac-toe. (20 minutes)

Student Activities:

• In pairs, students play a game of tic-tac-toe; then they discuss and write answers to the
posted questions.

• Read and discuss the article, “Robot Competitors Meet on a Soccer Field of Dreams”.

• In pairs, students write a series of clear instructions for a ‘robot’ to play tic-tac-toe.

Teaching/Learning Strategies:

• Before students enter the classroom, write the following on the board or chart paper:
“Play a game of tic-tac-toe with your partner. Then think about these questions
together, and write your answers: What are the rules of tic-tac-toe? What decisions
does a player need to make before taking a turn? How would you verbally describe each
of these decisions?”

• After a few minutes, have students share some of their responses. Make a list of the
rules of tic-tac-toe on the board. Ensure students remember that if statements and
conditionals are required to describe the moves of the game. Collect the written
responses to the warm up activity.

• Distribute the article “Robot Competitors Meet on a Soccer Field of Dreams” and have
students read it.

• Lead a discussion about the article.

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 204

• Explain to students that they will be working in pairs to write an application for robots
to enable them to play tic-tac-toe. The following day will be the ‘RoboTicTacToe
Tournament”. Remind them of the earlier discussion of tic-tac-toe. What goals does
each player have? Who starts the game? Is there a “best place” to put the first X? What
are some winning strategies for the next move? For example, “If the X is in the center,
then where should I put an O?” Why is “if-then” logic a good way to explain strategy for
a simple game like tic-tac-toe? How can Boolean operators, and/or/not, help simplify
the commands?

• Demonstrate the opening move for a game of tic-tac-toe on the board. Draw a nine-
space grid and label the squares one through nine. Then ask students where to place the
first X. Depending on where it is placed, have students create an if-then statement that
determines the next move. For example, “If the first X is in the center, place an O in a
corner square.”

• Ask students to complete the instructions. Each instruction in the entire sequence will
cover every possible combination of moves the students can think of until a game is
completed. Students need to remember that there are multiple options for each move
(including the beginning move). They should consider all of the possibilities in
developing their code.

Resources:

• Lesson plan from NY Times Lesson Plan Archive:
http://www.nytimes.com/learning/teachers/lessons/20010802thursday.html

• Copy of article: Day09-article.doc also available
http://www.nytimes.com/learning/teachers/featured_articles/20010802thursday.html

• Dictionary.

http://www.nytimes.com/learning/teachers/lessons/20010802thursday.html�
http://www.nytimes.com/learning/teachers/featured_articles/20010802thursday.html�

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 205

Instructional Day: 16

Topic Description: RoboTic-Tac-Toe Tournament and Introduction to RoboCup Junior Dance
Tournament.

Objectives:

Students will be able to

• Debug conditional statements by testing them and compete as teams in a “RoboTic-Tac-
Toe Tournament”.

• Describe dancing robots that have competed in the RoboCup Junior Dance Tournament.

Outline of the Lesson:

• Debugging of robotic-tac-toe statements (5 minutes)

• RoboTic-Tac-Toe tournament (35 minutes)

• Introduction to RoboCup Junior Dance competition (15 minutes)

Student Activities:

• Complete debugging tic-tac-toe statements by testing that they work correctly in several
games.

• Compete in RoboTic-Tac-Toe tournament.

• Listen to an explanation of RoboCup Junior Dance competition and watch videos of
dancing robots from RoboCup Jr competitions..

Teaching/Learning Strategies:

• Ask students to quickly test their tic-tac-toe instructions to make sure they are complete
and correct. They should play tic-tac-toe following only the instructions they have
written.

• Explain the tournament: each team will be acting as a single robot programmed by the
application they developed. One student will read a command from their application
and the other student will execute the command. Teams play against each other, testing
how successful their code is. Each game should be observed by the rest of the class and
monitored to ensure the teams only execute the commands read.

• At the conclusion of the tournament, celebrate the winning team. Ask the students to
describe why that team won? What have they learned? How would they improve their
programs?

• Explain that RoboCup is a competition for college students. There is a similar
organization called RoboCup Jr. that runs competitions for students who are younger
than high school. The first two robot projects will be based on the RoboCup Jr. program.

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 206

The first one is the ‘dancing robot’ which is the introductory level of the RoboCup Jr.
program. Students will build and program a robot that dances. Show videos of dancing
robots in competition.

Resources:

• RoboCup Junior videos: http://rcj.sci.brooklyn.cuny.edu/videos/index.html

• More videos available through YouTube such as
http://www.youtube.com/watch?v=25sZr3u-WwU

http://rcj.sci.brooklyn.cuny.edu/videos/index.html�
http://www.youtube.com/watch?v=25sZr3u-WwU�

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 207

Instructional Day: 17-20

Topic Description: Build, program, and present a dancing robot.

Objectives:

The students will be able to:

• Use the NXT and output devices to build and program a robot that dances in time to
music.

Outline of the Lesson:

• Explanation of project guidelines and show dance floor (15 minutes)

• Design, build, and program dancing robot (150 minutes)

• Dance competition (40 minutes)

• Reflection and Clean up (15 minutes)

Student Activities:

• Agree on ideas and music for robot.

• Build robot.

• Write a program in Robot Educator software.

• Test robot and refine program and hardware

• Participate in dance competition..

• Complete project reflection. Take robots apart and put materials away.

Teaching/Learning Strategies:

• Hand out requirements and rubric. Explain guidelines and answer questions.

• Circulate and make sure students are on task; answer questions as needed.

• Before the dance competition, assign one student as timekeeper and another as DJ.
Collect each group’s program as they compete and immediately assess the robot using
the rubric, while the next group gets set up. You may declare a winner or have the
students vote for the best robot.

• At the end of the competition, have each student complete the project reflection and
submit it, then clean up the robots.

Resources:

• Official RoboCup Jr Dance Competition rules (2008): www.robocup-
cn.org/en/league_sub.php?subleague=Junior%20Dance#article91 List of what the score
is based on available in Dancing-RoboCupScoring document

• Dancing Robot Activity

http://www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Dance#article91�
http://www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Dance#article91�

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 208

• Dancing Robot Rubric

• Project Reflection

• Recommendations for dance floor: Create a large square on one or more pieces of
butcher paper.

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 209

Instructional Days: 21-25

Topic Description: Build, program and present a rescue robot.

Objectives:

Students will be able to:

• Build and program a robot that uses input and output devices to count simulated people
by following a black line and counting “people” on the path.

Outline of the Lesson:

• Explanation of project guidelines and floor (15 minutes)

• Design, build, program robot (195 minutes)

• Rescue Robot competition (50 minutes)

• Reflection and Clean up (15 minutes)

Student Activities:

• Brainstorm how to build and program the robot.

• Build the robot.

• Write a program in Robot Educator software.

• Test the robot frequently and refine program and hardware.

• Participate in rescue competition.

• Complete project reflection. Take robots apart and put materials away.

Teaching/Learning Strategies:

• Hand out requirements and rubric. Explain guidelines and answer questions. Show
students the arena with the victims laid out. Explain that they must use sensors so that
the robot will follow the black line and will sense when it has encountered a victim or a
gap.

• Circulate the room and make sure students are on task; answer questions as needed.

• During the rescue competition, assign one student as timekeeper and one to keep track
of victims found. Collect each group’s program as they compete and immediately assess
the robot using the rubric , while the next group gets set up.

• At the end of the competition, have each student complete the project reflection and
submit it, then clean up the robots.

Resources:

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 210

• Rescue Robot Activity

• Rescue Robot Rubric

• Project Reflection

• Official RoboCup Jr Rescue Competition Rules (2008): http://www.robocup-
cn.org/en/league_sub.php?subleague=Junior%20Rescue#article80 scoring rules
available in Rescue-RoboCupScoring document.

• Instructions for building modules are available at
http://rcj.sci.brooklyn.cuny.edu/rcj2004/rescue-field-plans-2004.html. Alternatively use
white butcher paper on the floor with black electrical tape as a path. Use green
electrical tape to indicate victims.

http://www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Rescue#article80�
http://www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Rescue#article80�
http://rcj.sci.brooklyn.cuny.edu/rcj2004/rescue-field-plans-2004.html�

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 211

Instructional Days: 26-35

Topic Description: Complete Design Challenge final project.

Objectives:

Students will be able to:

• Design, build, and program a robot that solves a stated problem.

Outline of the Lesson:

• Explanation of project guidelines (15 minutes)

• Distribution of challenges (10 minutes)

• Design, build, and program robot (~7.5 class periods)

• Design challenge gallery walk (1 class period)

• Clean up (1 class period)

Student Activities:

• In groups, determine who will complete each of the four roles.

• Use the planning document to plan the robot.

• Design, build, program, and refine a robot which meets the challenge.

• Set up their robot and participate in a gallery walk.

• Disassemble the robots and carefully organize all the robotics equipment.

Teaching/Learning Strategies:

• Hand out requirements, planning document, and rubric. Explain guidelines and answer
questions.

• Hand out challenges. Allow students to trade challenges as necessary. You may choose
to have each group working on a different challenge or have them overlap.

• Approve planning documents as students finish plan and prepare to build and program
robot.

• Circulate and make sure students are on task; answer questions as needed. At the end
of each day, remind information specialists to fill out paperwork and remind groups to
clean up the space. Optionally, have students fill out the daily group evaluation.

• During the design challenge, fill out each rubric as you observe the robot. If possible,
videotape (or have a volunteer videotape) the running of each robot.

• On the final day of the unit have students disassemble the robots and organize the
equipment.

Resources:

 Version 2.0

Exploring Computer Science—Unit 5: Robotics Page 212

• Design Challenge Rubric

• Information Specialist Report

• Project-Reflection

• Daily Group Evaluation

• Challenges:
o Option 1: Challenges from Design Challenges for computer-controlled LEGO

products by Len Litowitz. (Litowitz-challenges.doc) Some of these challenges are
more appropriate than others.

o Option 2: Gary Stager’s Lego Challenges available from
http://www.stager.org/lego/challenges.pdf (stager-challenges.pdf) Not all of
these challenges are appropriate.

o Option 3: Webquest

http://www.stager.org/lego/challenges.pdf�

 Version 2.0

Exploring Computer Science—Unit 5: Handout Day 1 Page 213

Activities

What is a Robot? Handout

There are many different kinds of robots, from ones designed to build cars to ones that vacuum
to ones that explore other planets. To be a robot, a machine must meet certain criteria. A
machine is only a robot if it has all the elements listed below:

Body

The body is a physical substance and shape of some type. The body will be designed based on
the function – some look like vehicles, some like an arm, some like a person. If you can touch it,
that’s the body.

Control

Control is a program to control the robot. Robots must be told what to do. To control a robot we
need:

 Input

Input is the information that comes from the robot’s sensors. Robots have sensors that
they use to get information from the outside world. For example, a smoke detector can
detect smoke.

 Programmable

The program is a set of instructions or rules that the programmer gives the robot. For
example, a smoke detector has a program to make a sound if it senses smoke. To be a
robot, a machine must be programmable.

 Output

The output is the action a robot takes, often involving motors, lights, or sounds. For
example, a smoke detector makes a loud sound and might flash lights.

 Version 2.0

Exploring Computer Science—Unit 5: Handout Day 1 Page 214

Behavior

Behavior is the combination of outputs that result in the task or job the robot does. For
example, the behavior of a smoke detector is to “go off” in the presence of smoke. “Going off” is
a combination of making noise and flashing lights, and may also involve calling the fire
department.

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 1 Page 215

Am I a Robot? Activity

Image 1: Basic Stove

Image 2: New Microwave

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 1 Page 216

Are we Robots? Activity

Instructions: Below is a list of machines that you may encounter in your daily life. Add machines
to the bottom. Complete the table by deciding if the machine meets the criteria for being a
robot. Then determine if the machine is a robot.

Body – physical form of some kind
Control – Input – gets information from sensors, buttons, etc.
 Program – is programmable, follows a set of instructions you give it
 Output – an action it takes
Behavior – what it does, the function it performs

 Body Input Program Output Behavior Is it a
robot?

Stove

Microwave

Radio

iPod

Flashlight

Bicycle

Car

Alarm clock

Traffic light

Photocopier

Computer

Mars Rover

 Version 2.0

Exploring Computer Science—Unit 5: NY Times Article Day 15 Page 217

Robot Competitors Meet on a Soccer Field of Dreams

By Jeffrey Selingo

(Picture A LEAGUE OF THEIR OWN William Uther, an Australian who attends Carnegie
Mellon University, prepares for RoboCup 2001 with a Sony Aibo robot.

AN eight-day international soccer tournament that
begins this week features all the trappings of your
typical game: goals, blocked shots, even penalty
cards. But you won’t see any headers, and the
matches certainly won’t end with the winners ripping
off their jerseys. After all, the players are robots, the
field is a Ping- Pong table and the soccer ball is
actually a golf ball.

RoboCup 2001, the fifth annual soccer competition
for robots, is taking place over the next week in
Seattle — the first time the event is being held in the
United States — and is expected to draw some 111
teams from 23 countries.

The long-term goal of the competition is to create a
team of fully autonomous robots by 2050 that can

defeat the human team that wins soccer’s World Cup. But RoboCup has a more serious, and
immediate, side as well: to advance research in robots and artificial intelligence. What is learned
through robots working with one another on the soccer field may help foster the development
of robot teams that could perform surgery, fight large fires or lead search and rescue missions
after natural disasters, researchers said.

“These are the types of systems that in the future will replace dull, dirty and dangerous tasks,”
said Raffaello D’Andrea, an assistant professor of mechanical and aerospace engineering at
Cornell University and coach of its RoboCup team.

RoboCup’s founder, Hiroaki Kitano, a senior researcher at Sony Computer Science Laboratories,
said he chose soccer as the focus of the competition because the game is “clearly understood by
everyone in the world” and can be played without the ball ever leaving the ground (important
for players with square heads and no hands).

In RoboCup, teams compete in four leagues, depending on the type of robot: small, about the
size of a softball; middle, about 20 inches in diameter; four-legged Sony Aibo robots, about a
foot high; and the computer-simulation category, which dispenses with the robotic hardware
entirely.

The robots are programmed to decide on the best moves. Once the game begins, they are
totally on their own with no remote control by human players. Relevant objects, like the goals,

 Version 2.0

Exploring Computer Science—Unit 5: NY Times Article Day 15 Page 218

players, ball and walls of the field, are different colors so that the robots can distinguish them
from one another. The players can reach speeds up to five feet per second.

In the small-robot category, a video camera above the field keeps track of the ball, goals and all
the robots. The information is fed to an off-court computer, which guides strategy and tells the
robots how to move. In the middle and four-legged leagues, the robots carry their own cameras,
allowing each to operate autonomously.

“We can’t preprogram everything,” said Manuela M. Veloso, associate professor of computer
science at Carnegie Mellon University and chairwoman of RoboCup 2001. “We make them
capable of handling a wide spectrum of situations. When we see the game, we get surprised by
what they do.”

In 1998, for instance, the Carnegie Mellon team scored an “own goal,” or a goal against itself.
Last year, the Cornell team decided at the last minute to write code for penalty shots. “Good
thing we did because we ended up going into penalty shots with Singapore and won by a goal,”
said Michael Babish, a member of the Cornell team. “If we hadn’t written the code, they would
have beat us.”

Last week, teams from six American universities were making final preparations for the Seattle
competition, which begins on Saturday with round-robin matches and ends next Thursday and
Friday with quarterfinals, semifinals and finals. Like any other athletic team, the robots were
hard at work practicing on the field. Designers played as many games as possible, pitting the
robots against one another in specific situations to see how they would react, or against humans
controlling the opposition with joysticks.

“We’re not practicing to improve motor skills like humans do,” said Michael Bowling, a member
of the Carnegie Mellon team. “But humans practice so they can work better together as a team
and that’s important for these robots as well.”

It takes up to a year to design, build and write code for a team of robotic soccer players. In
Seattle, team members said they were looking forward to seeing the technological advances
that their competitors had made since last year’s RoboCup in Australia, where Cornell broke
new ground by introducing a three-wheel, omnidirectional robot that enabled players to move
sideways. Carnegie Mellon and other universities copied the idea this year.

After each year’s competition, the RoboCup teams are required to share their software with one
another. During the contest, teams will even scout the competition and update their code
during breaks in the action.

Each year, Dr. D’Andrea said, the game gets faster and more sophisticated. In 1997, RoboCup’s
first year, the robots often missed the ball, but now, Dr. D’Andrea said, “my students can’t beat
our system from last year, and they played video games their entire lives.”

RoboCup has yet to spur any new products or real-world applications, but give it time,
researchers said. RoboCup participants dream of possible applications of what they will learn in

 Version 2.0

Exploring Computer Science—Unit 5: NY Times Article Day 15 Page 219

the games. Teams of robots, for instance, might be sent to Mars to build structures for later
human use.

This year’s competition in Seattle will include a demonstration of how robots could be used in
recovery operations after a natural disaster, and it could become a regular part of RoboCup.

The games have forced mechanical and electrical engineers, as well as computer scientists, to
work together — a feat in itself, researchers said.

“You can’t just be a good electrical engineer and do well at this competition,” said Brett Nadler,
a member of the Cornell team. “It’s a system, and RoboCup is really the only thing that makes us
understand each other’s language.”

Article from The New York Times

http://www.nytimes.com/learning/teachers/featured_articles/20010802thursday.html

http://www/�

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 17 Page 220

Dancing Robot Activity

The dancing robot assignment is based on the first level of RoboCup Junior, an international
competition. More information about RoboCup Junior is available at
http://www.robocupjunior.org/

Task:

Build a robot that dances to music for 1-2 minutes.

Requirements:

• The robot should not take any input, only have output in the form of various dance
moves.

• Dance must be 1-2 minutes long. You have a total of 5 minutes to get set up, have the
robot dance, and get out of the way for the next group.

• The robot must stay in the marked space.
• The robot must be autonomous. Other than hitting the start button, no human can

touch it while it performs.
• The dance should be choreographed to the music you provide. The music must be

appropriate for playing at school – no obscenities, etc.
• Teams may restart the robot up to 2 times at the discretion of the teacher. Any re-

started, unless due to a problem not the fault of the team, will result in a grade penalty.
• Teams are encouraged to be as creative and entertaining as possible! Props, costumes,

and varied dance moves are encouraged. You may dance alongside your robot.
• Each team must print out its program and hand it in at the same time that they

compete.
• Fair play is an important part of the RoboCup competition. Teams are expected to help

other teams as needed and not deliberately interfere with or damage other teams’
work. All students are expected to respectfully watch all other teams compete.

Process:

1. Brainstorm ideas about how your robot should look, how it should work (wheels?
Arms?) and how you’ll build it. Select music.

2. Start building your robot
3. Build a program that directs the robot to do your dance moves
4. Test and revise the program. Make sure it runs for 1-2 minutes. Make sure it matches

the music. Make sure it won’t fall apart!
5. Show off the robot during the dance in class

You will have two class periods to build and program the robot, then you will present it on the
third day.

 Performance will be judged on

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 17 Page 221

• Programming (eg: use of loops, jumps, sub-routines, type of programming language
used, etc)

• Choreography (eg: robots to move in time with music, and change actions as music
changes tempo or rhythm. Choreography of humans and robots will be scored
separately, etc)

• Construction (i.e., robots should be of sound construction, components should not fall

off , appropriate use of gearing, smooth and reliable operation, interesting movements,

effective use of mechanics to achieve a purpose, etc)
• Entertainment Value (i.e.,How much does the performance entertain or delight the

audience? Originality and creativity of the presentation, etc)
• Costume (Costume of humans and robots will be scored separately)
• Cooperation between teams

Dance stage will be a flat area. Official Robocup Jr stage size is 6X4 m.

 Version 2.0

Exploring Computer Science—Unit 5: Rubric Day 17 Page 222

Dancing Robot Rubric

 Extra Credit A B C F

Programming Program uses
advanced
techniques
including
blocks from
the complete
palette, flow
blocks, etc.

Program is
straightforward
and efficient,
using loops and
parallel
sequences as
necessary.
Program
directs
attached
output devices
to dance.

Program is
straightforward
and easy to
understand.
Program is
inefficient and
could use
constructs such
as loops.

Program is
poorly written
or difficult to
understand.
Program has
unused parts
or does not
correctly
control robot.

Program does
not work.

Choreography Dance has at
least 10
different
dance moves.
Dance
matched music
precisely.
Robot changed
actions as
music changed
tempo or
rhythm

Dance has at
least 6
different dance
moves. Dance
is varied and
entertaining.
Dance is
choreographed
to match music

Dance has at
least 4
different dance
moves. Dance
is repetitive.
Dance lasted
for 45-60
seconds or
120-150
seconds.

Dance has 3
different
dance moves.
Dance lasted
for 30-45
seconds or
150-210
seconds.
Dance did not
match music.

Robot did not
move or did
not appear to
dance.

Construction Robot
constructed
using
advanced
gearing or
other
advanced
construction
techniques.
Robot

Robot is of
sound
construction:
nothing falls
off, robot
works as
intended.
Mechanics
used well to
achieve dance

Robot dances
as intended,
but some
extraneous
parts fall off.

Robot does
not work as
intended, but
does move.
Robot falls
apart. Very
simple
construction –
mechanics not

Robot falls
apart or does
not move at
all.
Construction
appears
careless or
haphazard.

 Version 2.0

Exploring Computer Science—Unit 5: Rubric Day 17 Page 223

demonstrates
extraordinary
creativity.

moves desired. used well.

Entertainment
Value

Presentation is
unusually
creative.
Humans dance
with robot.
Costume,
props, etc
enhance
robot.

Audience is
entertained by
robot,
presentation,
etc. Robot runs
correctly the
first time.

Presentation is
not smooth:
robot must be
restarted.

Problems
occur but
robot does
eventually run
mostly
correctly.

Robot does
not compete.

Cooperation Student(s)
helped other
groups

Student
worked well
with group.
Student
participated
actively in all
parts of
project.

Student
worked
somewhat well
with group.
Student
participated in
most parts of
project.

Student had
trouble
working with
group. Student
participated in
few parts of
project.

Student did
not participate
in project.
Student
sabotaged
others’ work.

 Version 2.0

Exploring Computer Science—Unit 5: Reflection Day 17 Page 224

Robot Project Reflection

For each member of your group, evaluate their performance as a team member:

Name: Circle one word to describe his/her performance

______________________________ Excellent Good Average Poor

 Why?
__

__________________________________ Excellent Good Average Poor

 Why?
__

________________________________ Excellent Good Average Poor

 Why?
__

What was your favorite thing about this project?

__

__

__

If you could do this project over, what would you do differently?

__

__

__
 __

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 21 Page 225

Rescue Robot Activity

The rescue robot assignment is based on the second level of RoboCup Junior, an international
competition. More information about RoboCup Junior is available at
http://www.robocupjunior.org/. This robot simulates robots sent to rescue people during
natural disasters. It must find “victims” along the path through each “room” and avoid
obstacles. The goal is to program a robot that uses sensors to respond to different stimuli.

Task:

Build a robot that follows a black line on a white background, counts green or metallic “people”
and avoids obstacles.

Requirements:

• The robot must follow the black line and attempt to complete the course through the
entire arena. The robot will begin at the starting location in the doorway of the first
“room”

• The robot should stop and flash a light for at least two seconds to indicate it has found a
victim. For extra credit, count the number of victims and display the count.

• The robot should be able to avoid items of debris blocking the black line
• If a robot has been stuck or lost the black line for more than 20 seconds, the teacher

may pick it up and put it back onto the black line a little beyond where it ran into
problems. The 20-second rule allows it to try to find its way back to the line without
intervention. A team may decide to quit if the robot is faulty or repeatedly loses the line.

• Robots must be controlled autonomously except for being started by a member of the
team.

• The robot will have 10 minutes to complete the course and identify all victims.
• Each team must print out its program and hand it in at the same time that they

compete.
• Fair play is an important part of the RoboCup competition. Teams are expected to help

other teams as needed and not deliberately interfere with or damage other teams’
work. All students are expected to respectfully watch all other teams compete.

Process:

6. Brainstorm ideas about how your robot should work: what sensors will you need? What
motors and lights? What programming constructs will you need?

7. Start building your robot
8. Build a program that controls the robot
9. Test frequently and revise the program. Make sure it correctly detects victims and that

it can follow the line. Check if it can navigated gaps and

http://www.robocupjunior.org/�

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 21 Page 226

You will have three and a half class periods to build and program the robot; then you will
present it in class.

Official Rules available

www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Rescue#article80

http://www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Rescue#article80�

 Version 2.0

Exploring Computer Science—Unit 5: Activity Day 21 Page 227

Official Robo Cup Jr. Rescue Competition

5.1. Victims:

5.1.1. Ten (10) points are awarded for each victim located by the robot. The robot indicates that

it has found a victim by stopping and flashing a lamp for at least two (2) seconds.

5.1.2. Extra points are NOT awarded for the same victim being located more than once.

5.2. Gaps in the black line:

5.2.1. Ten (10) points are awarded for each gap in the black line that the robot successfully

negotiates (i.e. recovers the line on the far side of the gap).

5.3. Debris blocking the black line:

5.3.1. Ten (10) points are awarded for each item of debris blocking the black line that the robot

successfully avoids (i.e. moves around the debris and recovers the line).

5.4. Rooms:

5.4.1. Ten (10) points are awarded for each room that the robot navigates successfully (i.e.

enters through one doorway and exits through the other doorway).

5.5. Ramp:

5.5.1. Thirty (30) points are awarded for the robot successfully negotiating a ramp without any

assistance.

5.6. Penalties:

5.6.1. Two (2) points are deducted for each false victim identification (i.e. whenever a robot

indicates that it has found a victim at a location where there isn't one).

5.6.2. Five (5) points are deducted for each lack of progress (i.e. whenever human intervention is
required to enable a robot to resume progress along the black line).

Official Rules available

www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Dance#article91

http://www.robocup-cn.org/en/league_sub.php?subleague=Junior%20Dance#article91�

 Version 2.0

Exploring Computer Science—Unit 5: Rubric Day 21 Page 228

Rescue Robot Rubric

 Extra Credit A B C F

Victims Found victims
are counted
and count is
displayed

All victims
correctly
identified

Most victims
correctly
identified

Some vicitims
correctly
identified

No victims
correctly
identified

Gaps All gaps
navigated
correctly

Most gaps
navigated
correctly

Some gaps
navigated
correctly

No gaps
navigated
correctly

Debris Robot avoided
all debris

Robot avoided
most debris

Robot avoided
some debris

Robot unable
to avoid debris

Rooms Robot entered
all rooms
through one
door and
exited through
the other

Robot entered
most rooms
through one
door and
exited through
the other

Robot entered
one room and
was unable to
exit

Robot did not
enter the first
room

Construction Robot
constructed
using
advanced
gearing or
other
advanced
construction
techniques.
Robot
demonstrates
extraordinary
creativity.

Robot is of
sound
construction:
nothing falls
off, robot
works as
intended.

Parts of robot
fall off.

Very simple
construction –
mechanics not
used well.

Robot does
not work as
intended, but
does move.
Robot falls
apart. Robot is
unable to
navigate due
to construction

Robot falls
apart or does
not move at
all.
Construction
appears
careless or
haphazard.

Programming Program uses
advanced
techniques
including

Program is
straightforward
and efficient,
using loops and

Program is
straightforward
and easy to
understand.

Program is
poorly written
or difficult to
understand.

Program does
not work.

 Version 2.0

Exploring Computer Science—Unit 5: Rubric Day 21 Page 229

blocks from
the complete
palette, flow
blocks, etc.

parallel
sequences as
necessary.
Program uses
sensors and
strong logic to
navigate
challenges and
find victims.

Program uses
inefficient logic
to navigate
challenges and
find victims.

Program has
unused parts
or does not
correctly
control robot.
Program does
not correctly
use sensors to
control
motion.

Cooperation Student(s)
helped other
groups.
Managed own
role & helped
group
members.

Student
worked well
with group.
Student
participated
actively in all
parts of
project.

Student
worked
somewhat well
with group.
Student
participated in
most parts of
project.

Student had
trouble
working with
group. Student
participated in
few parts of
project.

Student did
not participate
in project.
Student
sabotaged
others’ work.
Made it
difficult for
group to work.

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Page 230

Final Project

Design Challenge Planning

STEP #1 TASK DEFINITION

Determine the purpose of your challenge – What are we supposed to do?

Criteria – list the specifications the robot needs to meet

1.

2.

3.

4.

5.

STEP #2 TASK BREAK-DOWN

List the steps the robot will need to go through to accomplish the task

1.

2.

3.

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Page 231

4.

5.

6.

7.

8.

9.

STEP #3 BRAINSTORMING

List some possible solutions to the challenge:

1.

2.

3.

4.

5.

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Page 232

6.

7.

8.

STEP #4 ROBOT DESIGN

Use scratch paper to sketch ideas for the robot, then choose the “best” design idea and
illustrate it NEATLY below. Include any labels or explanations necessary to make your design
understandable.

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Page 233

STEP #5 PROGRAM FLOWCHARTING

Outline the programming steps for your robot to accomplish the task. This should be in the form
of a flowchart.

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Page 234

STOP!!! – GET TEACHER APPROVAL BEFORE MOVING ON: _____________________

STEP #6 ROBOT BUILDING AND PROGRAMMING

Build the robot and program it according to your plan!

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Suggested Rubric Page 235

Design Challenge Rubric

 Extra Credit A B C F

Successful
Solution

Meets criteria
and one or
more super
challenge
criteria

Solution clearly
solves the
problem but
not super
challenges.

Solution solves
problem
inelegantly or
inefficiently.

Solution does
not completely
solve problem.

No reasonable
attempt made
to solve
problem.

Programming Program uses
advanced
techniques
including
Boolean logic,
Complete
palette blocks,
etc. Program
demonstrates
extraordinary
creativity or
unique way of
solving
problem

Program is
straightforward
and efficient,
and uses
appropriate
programming
constructs.
Program has a
reasonable
algorithm for
solving problem
and uses good
logic.

Program is
straightforward
and easy to
understand.
Program is
inefficient.
Program has a
reasonable
algorithm for
solving
problem.

Program is
poorly written
or difficult to
understand.
Program has
unused parts or
does not
correctly
control robot.
Algorithm is
strained.

Program does
not work.
Program does
not solve
problem
effectively.

Construction Robot
constructed
using advanced
gearing or
other
advanced
construction
techniques.
Robot
demonstrates
extraordinary
creativity.

Robot is of
sound
construction:
nothing falls
off, robot
works as
intended.
Mechanics
used well to
achieve desired
outcome.
Robot can solve
problem
repeatedly.

Robot works as
intended, but
some
extraneous
parts fall off.
Moderate
degree of
repeatability:
robot will run
again but must
be adjusted or
fixed.

Robot does not
work as
intended, but
does move.
Robot falls
apart. Very
simple
construction –
mechanics not
used well.
Robot cannot
run repeatedly.

Robot falls
apart or does
not move at
all.
Construction
appears
careless or
haphazard.

Documentation Documentation
goes beyond

Ample and
accurate

Good
documentation:

Fair
documentation:

Little or no

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Suggested Rubric Page 236

required
paperwork.

documentation.
Documentation
kept
consistently
and thoroughly.

documentation
kept
consistently but
not as thorough
as it could be.

documentation
kept
inconsistently
and missing
parts.

documentation

Cooperation Student(s)
helped other
groups

Student worked
well with
group. Student
participated
actively in all
parts of
project.

Student worked
somewhat well
with group.
Student
participated in
most parts of
project.

Student had
trouble working
with group.
Student
participated in
few parts of
project.

Student did
not participate
in project.
Student
sabotaged
others’ work.

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Daily Group Evaluation Page 237

Daily Group Evaluation Date: __________________

List each member of your group (including yourself) and assess each area with:

 3 = strongly agree (s/he was very good at this)

 2 = agree (about right)

 1 = disagree (this was a problem)

Name Listened respectfully to
group members

Was focused
and on-task

Did his/her
share of work

(self)

Comments:

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Information Specialist Report Page 238

Information Specialist Report

You are responsible for reporting the status of the project to the Team Manager every day. How has the team
progressed? Address the following questions:

1. What did your team accomplish today?
2. What problems did the team find today?
3. What solutions did the team try?
4. Other comments?

 Tasks Report

Per 1

Get Challenge

Begin brainstorming &
Designing

Per 2

Finish Design & get
approval

Begin building test
parts – try different
ideas

Per 3

Finish building test
parts & begin
assembling robot from
successfully tested
parts

Per 4 Continue assembling
robot from parts

Create program for
robot

Per 5 Continue building &
programming robot –
test regularly

Per 6

Continue to refine
robot – test regularly
with the program

 Version 2.0

Exploring Computer Science—Unit 5: Final Project Information Specialist Report Page 239

Per 7

Finish refining robot-
make sure it completes
challenge!

Per 8

Finish or enhance
robot

Per 9

Design Challenge:
Show off robot!

Per 10

Clean up: Take apart
robot, return materials
to original state

Names: ___

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 240

Unit 6:

Computing Applications

© Computer Science Equity Alliance, 2009

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 241

Daily Overview Chart

Instructional Day Topic

1 Introduce the Python programming environment and the Pen class.

2 Introduce drawing in Python by using coordinates .

3-5 Create a program to draw a dream house or car using the concept of pair
programming.

6 Introduce the use of Dialogs in Python.

7-10 Introduce the concepts of software development activities, models and
design teams. Practice dialogs and working in teams to create an order
form program.

11 Introduce numerical types and math in Python.

12 Introduce functions in Python.

13 Practice the use of functions through programs to exchange currencies
and calculate measurements.

14 Introduce conditionals in Python.

15-17 Practice the use of conditionals and functions through the creation of a
Choose Your Own Adventure program.

18 Introduce while loops in Python.

19 Introduce the for loop in Python.

20 Introduce the concept of lists.

21-25 Practice the use of loops, conditionals, and list through the creation of an
opinion poll program.

26-30 Complete final project.

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 242

Daily Lesson Plans

Instructional Day: 1

Topic Description: This lesson introduces the Python programming environment and the Pen class.

Objectives:

The students will be able to:

• Navigate the Python environment.

• Start drawing with the Pen class..

Outline of the Lesson:

• Journal Entry (5 minutes)

• Introduction of Python (5 minutes)

• Introduction of final project (5 minutes)

• Introduction of Pen class (10 minutes)

• Use of the Pen class to make a very simple house (30 minutes)

Student Activities:

• Complete journal entry.

• Use the Pen class to make a very simple house.

Teaching/Learning Strategies:

• Journal Entry : Write down detailed instructions for drawing a square on a piece of paper using a pen.
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• Introduction of Python
o Python can be downloaded for free at http://www.python.org.
o Python is an interpretive language that is used by companies like Google, YouTube, and Pixar.
o Introduce the environment.

 To run Python, go to the start menu and run IDLE (Python GUI). This opens the Python
shell.

• You could type your code directly into Python, but it’s easier to just keep your
work in a file.

 Use File->New Window to open up the editor.

• Type: print(‘Hello World’)

• Save your file as hello.py (File->Save)
o When saving Python files the first time, you need to type in the .py

extension. Your files will still run with out it, but the .py files are syntax
highlighted.

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 243

• To run the file, Run->Run Module or F5
o The file will run in the Python Shell window.

• Introduction of final project
o Show Final Project

 Final Project Description
 Final Project Suggested Rubric

• Introduction of Pen class
o On the board or chart paper, draw a rectangle to be your canvas.
o Ask the students to guide you in drawing a square using only the following:

 forward(100) – draw a line forward
 left(degrees) – turn left so many degrees
 Explain that the Pen starts in the middle with the direction facing toward the top of the

screen..
 Keep track of the current direction as you draw.

o Students write the code to draw the square in Python.
 The file must start with: from turtle import *
 The next line is: pen = Pen()
 The commands must start with pen. (i.e. pen.forward(100))

• Students use the Pen class to make a very simple house
o Circulate room and help students.
o See House Rubric.
o Provide students with Drawing Reference.

Resources:

• Drawing Class Reference

• House Rubric

• Final Project

• Final Project Suggested Rubric

• http://www.python.org

http://www.python.org/�

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 244

Instructional Day: 2

Topic Description: This lesson provides an introduction to drawing in Python using coordinates.

Objectives:

The students will be able to:

• Use up() and down() to move the pen without drawing.

• Draw a happy face using goto() and circle().

Outline of the Lesson:

• Journal Entry (5 minutes)

• Introduction of drawing using coordinates (15 minutes)

• Use of the Pen class to make a happy face (35 minutes)

Student Activities:

• Complete journal entry.

• Make a happy face using coordinates.

Teaching/Learning Strategies:

• Journal Entry: Write down detailed instructions for drawing a happy face on a piece of paper using a pen.
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• Introduction of drawing using coordinates
o Coordinates:

 The pen class uses an x-y coordinate plane just like in Algebra.
 The origin (0,0) is in the middle of the canvas.
 You can use goto(x,y) to move the pen to a specific point instead of using forward(), left()

and right(). It is similar to playing connect the dots.
o Have students try this example on their own and then go over it on the board:

pen.goto(0,200)
pen.goto(100,300)
pen.goto(200,200)
pen.goto(200,0)
pen.goto(0,0)

o Ask, “What if I wanted to put in a window on the house that didn’t touch the wall?” Say, “We’ll
come back to that in a moment.

o Ask the students to volunteer to share their journal response for drawing a happy face as you
follow their directions and draw on the board.
 DO NOT lift the marker off the board unless they tell you to. In other words, go ahead

and draw lines that connect the mouth to the eyes, etc.

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 245

 The main point of the happy face is that sometimes, you want to lift the marker off the
board in order to move without actually drawing the connecting lines.

o Introduce up() and down()
 up() – lift pen off canvas (don’t draw)
 down() – put pen down on canvas (will draw)

• The pen starts down on the canvas
o Have students use up() and down() to make a window on the simple house that does not touch

the walls. Go over an example with class. Example:
pen.up()
pen.goto(50,150)
pen.down()
pen.goto(75,150)
pen.goto(75,175)
pen.goto(50,175)
pen.goto(50,150)

o To draw circles, students have to use pen.circle(radius)
 The current location will be a point on the circle with the center radius units to the left.
 Show the students ballon.py.

• Students use the Pen class to make a happy face
o Have students follow directions in Happy Face Project to make their own happy face in Python.

 See happy solution.py.

Resources:

• Drawing Class Reference

• balloon.py

• Happy Face Project

• happy solution.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 246

 Instructional Days: 3 - 5

Topic Description: In this lesson students are introduced to the concept of pair programming.

Objectives:

The students will be able to:

• Develop a program using pair programming.

• Use the Pen class to draw their dream house or car.

Outline of the Lesson:

• Journal Entry. (5 minutes)

• Review of drawing with Pen class (5 minutes)

• Discussion of pair programming (10 minutes)

• Journal Entry. (5 minutes)

• Description of project (5 minutes)

• Dream House/Car project (55 minutes)

• Peer Review (15 minutes)

• Completion of Dream House/Car project (40 minutes)

• Gallery walk (15 minutes)

• Discussion of the advantages and disadvantages of pair programming. (10 minutes)

Student Activities:

• Complete journal entry.

• Review Drawing with Pen class.

• Participate in discussion on pair programming.

• Complete journal entry.

• Work on Dream House/Car project.

• Participate in peer review.

• Complete work on Dream House/Car project.

• Participate in gallery walk.

• Participate in a discussion on the advantages and disadvantages of pair programming.

Teaching/Learning Strategies:

• Journal Entry: Summarize the two ways to draw using the pen class.
o Monitor students as they summarize the two ways to draw using the pen class.
o Have students share responses with elbow partner.

• Review of drawing with Pen class
o Have a few students share their journal entries. Take their responses and sort them into two

columns. Try to reinforce some of the following:

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 247

 Drawing with forward(), left(), right()

• You have to keep track of current direction.

• You don’t have to know the coordinates.

• It can be tricky to connect a line to a previously drawn point (i.e. connecting the
roof to the actual house).

 Drawing using goto()

• You don’t have to worry about the angles.

• You have to know the coordinates.

• It can be easier if you can keep track of the points or if you draw your figure
labeled on graph paper.

• Introduction of pair programming
o Describe the process of one person in the pair being the driver (typing) and one being the

navigator (reviews code as it is typed) and that the pair switches roles every 30 minutes or so.
o Point out that there are advantages and disadvantages to this procedure.

 Have students write what they think some of those might be and tell them that you will
discuss those after they have an opportunity to actually participate in pair programming.

• Journal Entry: Summarize the problem solving process from Unit 2.
o Monitor students as they summarize the problem solving process.
o Have students share responses with elbow partner.

• Description of project
o Introduce project (Dream House/Car Project and Dream House/Car Rubric).
o They will do the programming using the pair programming process.
o They should use the problem solving process to design their house and think about the code

before they begin typing; they can use graph paper to draw their house before coding.

• Dream House/Car project
o Circulate room and help students.

• Peer Review
o Have programming pairs examine another pair’s project. The examiner pair uses the rubric to

give the other pair a progress grade (i.e. , so far you have this many points).

• Continued Work on Dream House/Car
o Circulate room and help students.

• Gallery Walk
o Facilitate students in circulating the room and filling out the Peer Grading Sheet (Peer Grading).

• Discussion of the advantages and disadvantages of pair programming.
o Ask students to report on their experiences.

Resources:

• Dream House/Car Project

• Dream House/Car Rubric

• Drawing Class Reference

• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 248

Instructional Day: 6

Topic Description: This lesson provides an introduction to Dialogs in Python.

Objectives:

The students will be able to:

• Use dialogs for input and output.

Outline of the Lesson:

• Journal Entry (5 minutes)

• Practice with Dialogs (30 minutes)

• Review of answers (20 minutes)

Student Activities:

• Complete journal entry.

• Practice with Dialogs.

• Review answers.

Teaching/Learning Strategies:

• Journal Entry: What are some examples of when a program asks the user to input information?
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• Practice with Dialogs
o Individually, students answer questions and follow directions to discover how to use Dialogs for

input and output. (See dialoguepractice.py)
o Encourage students to experiment and discover how to use the Dialogs.

• Review of answers
o Review answers with students (see dialoguepracticesolution.py).
o Emphasize:

 You can just create a variable by typing it’s name and using the = to save a value into it.
 Later on, when you refer to the variable, it still has the value that you saved in it.

Variables in IDLE are black.
 Words inside the quotes (string literals) are printed exactly as seen. In IDLE, they appear

in green.
 You can append a variable to a string with a + .
 \n inside the quotes will create a newline at that point.
 To put a space in between two variables, you need to place a + “ “ + in between them.
 To place a space between a string literal and a variable, you can just put the space inside

the quotes.
Resources:

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 249

• dialoguepractice.py

• dialoguepracticesolution.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 250

Instructional Days: 7-10

Topic Description: In this lesson, students practice using Dialogs in Python.They are introduced to software
development activities, models and design teams. Students work in teams using a development process to design
an order form program.

Objectives:

The students will be able to:

• Write a simple Python Dialoge.

• Explain software development activities, models, and design teams.

• Use dialogs to create an order form program working in teams.

Outline of the Lesson:

• Journal Entry (5 minutes)

• Review of how to use Dialogs (10 minutes)

• Research on software development process, models, and design teams (30 minutes)

• Presentations of research (25 minutes)

• orderform.py (20 minutes)

• Introduction of project (10 minutes)

• Order form project (100 minutes)

• Gallery Walk (20 minutes)

Student Activities:

• Complete journal entry.

• Review how to use Dialogs.

• Complete research on software development process, models, and design teams.

• Complete presentations of research.

• Work on order form project

• Participate in gallery walk.

Teaching/Learning Strategies:

• Journal Entry: What are some of the things that you remember from using Dialogs yesterday?
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• Review of how to use Dialogs
o Guide students in sharing their journal responses. Make sure all of the features of Dialogs are

reviewed.

• Research on software development process, models, and design teams
o Divide students into teams of 3-5, depending on the size of the class.

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 251

o Assign 1 or more teams (depending on the total number of teams) to research each of the
following topics: software development activities, software development models, and software
design teams.

• Presentations of research
o Have one team for each of the topics present their findings. If there is more than one team per

topic, have the other teams add anything that the presenting team left out.

• Order Form
o Have students run order form.py as a prelude to writing an order form program.

• Introduce Project
o Explain that they will be working in teams to develop an order form.
o Student teams should develop a project plan, assign team roles, and complete the project.

• Order form project
o Circulate room and help students get organized as a team and create their design.

• Gallery Walk
o Have students circulate the room trying everyone else’s order form program (everyone go one

computer clockwise, etc). Have them fill out the Peer Grading Form (Peer Grading.doc) and vote
for the best project.

Resources:

• orderform.py

• orderformsolution.py

• Order Form Rubric

• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 252

Instructional Day: 11

Topic Description: This lesson introduces students to numerical types and math in Python.

Objectives:

The students will be able to:

• Use Dialogs to receive numerical input from the user.

• Write a tip calculator program.

Outline of the Lesson:

• readnum.py (10 minutes)

• Number discussion (15 minutes)

• calculatetip.py (30 minutes)

Student Activities:

• Complete readnum.py.

• Participate in Number discussion.

• Complete calculatetip.py.

Teaching/Learning Strategies:

• readnum.py
o Have students follow directions in readnum.py answering questions on paper.

• Number discussion
o Review answers to readnum.py (see readnumsolutions.py)
o Emphasize:

 Integers are whole numbers only (including the negatives).
 Float (short for Floating Point number) are decimals.
 str() needs to be used to output integers and floats.
 The whole reason for the different types is so we can do math on variables that hold

integers or floats.

• Addition is +

• Subtraction is –

• Multiplication is *

• Division is /

• To save an answer, we need a variable followed by an equals.
o Example: average = 15 / 4.0
o This saves 3.75 into the variable average

• calculatetip.py
o Circulate and help students complete calculatetip.py. (See calculatetipsolution.py)

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 253

o Don’t be concerned if dollar amounts in output do not have 2 decimal places.

Resources:

• readnum.py

• readnumsolutions.py

• calculatetip.py

• calculatetipsolutions.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 254

Instructional Day: 12

Topic Description: This lesson introduces functions in Python.

Objectives:

The students will be able to:

• Use functions in calculations.

• Write a function.

Outline of the Lesson:

• gpa.py (15 minutes)

• Review of gpa.py (5 minutes)

• functions.py (20 minutes)

• Functions discussion (15 minutes)

Student Activities:

• Complete gpa.py.

• Participate in review of gpa.py.

• Complete functions.py.

• Participate in functions discussion.

Teaching/Learning Strategies:

• gpa.py
o Give students gpa.py. Have them follow the directions in the file and answer the questions.

• Review of gpa.py
o Review answers in gpasolution.py.
o In the answer for number 6, make some connections to where integer division is useful:

 If you have $18 and pizzas cost exactly $5 each. If you want to know how many pizzas you
can buy, it would be 18/5 =3. You wouldn’t care about the remainder since they won’t
sell you fractions of a pizza.

• functions.py

• Functions discussion
o Review answers to functions.py. (see functionssolution.py)
o Give a formal explanation of functions.

 Functions are defined using the def statement followed by the function name, argument
list in parentheses, and a :

• def functionname(arguments):
 A function may have any number of arguments (also called parameters). It can even have

none.

• Example of a function with no arguments:

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 255

o Tell a student to run the function raisehand().
 The student should be able to raise their hand without requiring

more information (an argument).

• Example of a function that requires an argument:
o Tell a student to run the function call()to call someone on a phone.

 The student should ask you whom to call. They should not be
able to call without knowing the name or number of the person
to call (they need an argument for that).

 The function call should be more like call(“John”).
 The body of the method must be indented using a tab. The method can be several lines

long.
 The function may or may not have a return statement to send information back to the

user.

• Example of a function without a return:
o Again, tell a student to run the function raisehand().

 They raise their hand, but don’t verbally respond. In other words,
they act but do not return any information back.

• Example of a function with a return:
o Tell a student to run the function getage().

 The student should respond by saying their age. In other words,
the function getage() returns a number that is the age.

 When python sees the def statement, it defines the function but does not run it. It is not
run until it gets to the bottom of the file where the functions are called.

 The whole idea behind functions is to reuse code and also to not have to repeat the same
code over and over.

 You can call methods within methods. In other words, you can use methods as building
blocks to build more sophisticated methods.

Resources:

• gpa.py

• gpasolution.py

• functions.py

• functionssolutions.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 256

Instructional Day: 13

Topic Description: In this lesson students will write programs that include functions.

Objectives:

The students will be able to:

• Write a program to exchange currencies.

• Write a program to calculate measurements.

Outline of the Lesson:

• Journal Entry (5 minutes)

• exchange.py (25 minutes)

• measurements.py (25 minutes)

Student Activities:

• Complete journal entry.

• Complete exchange.py.

• Complete measurements.py.

Teaching/Learning Strategies:

• Journal Entry: What do you remember about functions from yesterday?
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• exchange.py
o Have students help you write the method pesostodollars() on the board.
o Have students follow directions in exchange.py (for answer, see exchangesolution.py). Grouping

can be individual or in groups of two.
o After a few minutes, write the answer to dollarstopesos() on the board so students can check that

they are on track.

• measurements.py
o Have students follow directions in measurements.py (for answer, see measurementssolution.py).

Grouping can be individual or in groups of two.

Resources:

• exchange.py

• exchangesolution.py

• measurements.py

• measurementssolutions.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 257

Instructional Day: 14

Topic Description: This lesson explores the use of conditionals in Python

Objectives:

The students will be able to:

• Use conditionals to complete Python versions of the Age and Rock, Paper, Scissors programs from Unit 4.

Outline of the Lesson:

• Journal Entry (5 minutes)

• Conditional Discussion (10 minutes)

• age.py (15 minutes)

• Rock, Paper, Scissors (rps.py) (25 minutes)

Student Activities:

• Complete journal entry.

• Participate in onditional Discussion.

• Complete age.py.

• Complete Rock, Paper, Scissors (rps.py).

Teaching/Learning Strategies:

• Journal Entry: What do you remember about ifs and else’s from Scratch?
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

Conditional Discussion
o Ask students to share their journal entries and write down how conditionals work in Scratch.

Then use that to help introduce them in Python. In other words, In Scratch it looks like this while
in Python it looks like this.

o The basic structure of an if in python is:

 if somecondition:
o The conditions could be comparisons like in Scratch

 Equal to: ==
 Less than: <
 Greater than: >
 Less than or equal to: <=
 Greater than or equal to: >=
 Not equal to: !=

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 258

o In Scratch, the body of the if is determined by placing the other puzzle pieces within the if. In
Python, the body is determined by indentation (just like the functions)

o In Scratch, the if–else is a separate puzzle piece. In Python, you can place an else after any if.
 if somecondition:

body
 else:
 body

o You may still nest ifs inside of ifs or elses like in Scratch.
o Placing an if inside an else is so common, that python hasan elif (else if in other languages). This is

known as an if-else chain. It means that the program will execute only one of the choices. It will
also stop checking the other elifs once it finds a condition that is true.
 if somecondition:

body
 elif somecondition:
 body

elif somecondition:
 body
 else:

body
• age.py

o Individually, students follow the instructions in age.py. (see also agesolution.py)

• Rock, Paper, Scissors (rps.py)
o Individually, students follow the instructions in rps.py. (see also rpssolution.py)

Resources:

• age.py

• agesolution.py

• rps.py

• rpssolution.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 259

Instructional Day: 15-17

Topic Description: This lesson requires students to apply their knowledge of conditionals and functions to
develop a Choose Your Own Adventure program in Python.

Objectives:

The students will be able to:

• Use conditionals and functions to write a Choose Your Own Adventure Program.

Outline of the Lesson:

• Presentation of assignment (10 minutes)

• Choose Your Own Adventure Program (100 minutes)

• Presentations/ Peer Grading (55 minutes)

Student Activities:

• Develop Choose Your Own Adventure program.

• Participate in presentations and peer grading.

Teaching/Learning Strategies:

• Presentation of ssignment
o Show students chooseexample.py.
o Show students decision tree example.doc.

 Trace through the tree as you run the example so that the students can see the
correlation.

o Show students Choose Your Own Adventure Rubric.
o Give students choose.py as a starting place.
o Recommend writing the Decision Tree first, and then writing the code.

• Choose Your Own Adventure Program
o Individually, students develop their adventures.

• Presentations/ Peer Grading
o Students take turns presenting their adventures in front of the class. The student will read the

story as the program is executing.
 First, allowing the class to make all the choices
 Next, running the story again making his or her choices
 Finally, presenting their decision tree

o The other students fill out Peer Grading.doc making sure to score each student and vote for the
best at the end.

Resources:

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 260

• Choose Your Own Adventure Rubric

• Decision Tree Sample

• choose.py

• chooseexample.py

• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 261

Instructional Day: 18

Topic Description: This lesson introduces students to the while loop in Python.

Objectives:

The students will be able to:

• Explain uses for the while loop.

Outline of the Lesson:

• Journal Entry (5 minutes)

• busy.py and count.py (15 minutes)

• Iteration Discussion (15 minutes)

• menu.py (20 minutes)

Student Activities:

• Complete journal entry.

• Complete busy.py and count.py.

• Participate in iteration discussion.

• Complete menu.py.

Teaching/Learning Strategies:

• Journal Entry: What do you remember about the forever and repeat blocks from Scratch?
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• busy.py and count.py
o Individually, students follow directions and answer questions in busy.py and count.py. See

busysolution.py and countsolution.py.
o Students might have to close the Python Shell window to stop busy.py.

• Iteration Discussion
o Have students start by sharing some of what they remember about the forever and repeat blocks

in Scratch.
o Review answers in busysolution.py and countsolution.py.

 Have students share their answers to #8 in count.py..
o Some key points to share:

 The structure of a while is just like an if. There is a condition section followed by a :. The
body of the while is also determined by indenting.

 The while is like an if that keeps repeating as long as the condition is true.
 The forever block in Scratch is like the while True in busy.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 262

 The repeat _ block in Scratch can be made with a while and a counting variable like in
count.py.

 The main use of the while loop is to repeat code without having to rewrite it. This is
especially useful for things like menu.py since you can keep taking orders without having
to know how many things the user is going to order before you start.

• menu.py
o Individually, students follow directions in menu.py. See menusolution.py.

Resources:

• busy.py

• busysolution.py

• count.py

• countsolution.py

• menu.py

• menusolution.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 263

Instructional Day: 19

Topic Description: This lesson introduces students to the for loop in Python.

Objectives:

The students will be able to:

• Use the for loop to make a sunburst and a bottles of root beer program.

Outline of the Lesson:

• Journal Entry (5 minutes)

• for Loop Discussion (10 minutes)

• sunburst.py (20 minutes)

• rootbeer.py (20 minutes)

Student Activities:

• Complete journal entry.

• Participate in for Loop discussion.

• Complete sunburst.py.

• Complete rootbeer.py.

Teaching/Learning Strategies:

• Journal Entry: Describe the way that the while loop was used in count.py.
o Monitor students responding in journal.
o Instruct students to share responses with their elbow partners.

• for Loop Discussion
o In Python, the for loop has a few different uses. Here we are going to use it to iterate a variable

through various numbers.
o The for loop is like a more organized while loop.
o The basic structure of an if in python is:

 for somevariable in range(start, end, increment):
o Just like the if and while, the body of the loop is defined by indenting.
o The loop will start at start, but will end before end.
o If you leave off the increment part, it will automatically increment the variable by 1.
o For loops can be made infinite. See fourth example below.
o Test the students with some examples:

 for x in range (0, 10):
print x

• output: 0 1 2 3 4 5 6 7 8 9
 for x in range (0, 10, 2):

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 264

print x

• output: 0 2 4 6 8
 for x in range (5, 0, -1):

print x

• output: 5 4 3 2 1
 for x in range (0, 10, -1):

print x

• infinite loop

• sunburst.py
o Show the students the output of a completed sunburst.py so they know what they are trying to

accomplish. See sunburstsolution.py.
o Individually, students follow directions in sunburst.py.

• rootbeer.py
o Individually, students follow directions in rootbeer.py. See rootbeersolution.py.
o Make sure to check that their program stops when the number of bottles gets to 0. A common

mistake is to have the song continue and end with –1 bottles of soda on the wall (To this, I would
ask the student to show me what –1 bottles of soda looks like).

Resources:

• sunburst.py

• sunburstsolution.py

• rootbeer.py

• rootbeersolution.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 265

Instructional Day: 20

Topic Description: In this lesson students are introduced to the concept of storing data in Lists.

Objectives:

The students will be able to:

• Create lists.

• Write some simple list algorithms.

Outline of the Lesson:

• lists.py (15 minutes)

• Lists Discussion (15 minutes)

• morelists.py (15 minutes)

• Review ofmorelistssolution.py (10 minutes)

Student Activities:

• Complete lists.py.

• Participate in lists discussion.

• Complete morelists.py.

• Participate in review morelistssolution.py.

Teaching/Learning Strategies:

• lists.py
o Distribute lists.py and have students complete the questions and instructions individually or in

groups of 2.

• Lists Discussion
o Review listssolution.py
o Lists can be created with initial contents (i.e. nums = [6, 8, 86]) or empty (i.e. nums =

[]).
o Lists can be accessed like arrays in most languages using []’s and the index number.
o The index numbers start with 0 and go to one less than the length of the List.
o When the List is being used on the left side of an = it means save the value on the right into the

List. When the List is on the right side of the equals, it means lookup the value in the List.
 Example:

nums = [6, 8, 4]
nums[2] = 86
#nums is now [6, 8, 86]
temp = nums[1]

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 266

#temp now equals 8
o Items in the List can be incremented.

 Example:
nums = [6, 8, 4]
nums[2] += 1
#nums is now [6, 8, 5]

o To get the length of the List (how many items does it hold), use the len() function. For

example, len(numbers) returns the length of the List, numbers.
o There are two major ways to iterate through a List:

 A for loop

• Example:
for n in numbers:
 print n

• This traverses the List item by item in order.

• During each iteration, n is the actual data in the List.

• This is like using a for each loop in Java.
 A for loop using range

• Example:
for i in range(0, len(numbers, 1):
 print numbers[i]

• You have to use the []’s to extract the data out of the List.

• This gives you flexibility to pick the exact range you want to traverse as well as the
direction.

• You may even skip items by changing the incrementing number in the for loop
(change 1 to 2 for every other item).

• This is more like traditional use of the for loop with arrays in many languages.
o Much like ArrayLists in Java, the size of the List can change.
o There are many functions of lists that we are not covering in this unit (appending, slicing, etc.).
o You may want to give students additional example on the board to check for understanding.

• morelists.py
o Students follow directions in morelists.py.
o If students are stuck, have them first choose the appropriate for loop to accomplish the required

task.

• Review morelistssolution.py
o Have students contribute their answers.

Resources:

• lists.py

• listssolution.py

• morelists.py

• morelistssolution.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 267

Instructional Day: 21-24

Topic Description: This lesson requires students to use their knowledge of loops, conditionals, and lists to
develop an opinion poll program.

Objectives:

The students will be able to:

• Use Lists, loops, and conditionals to create an opinion poll.

Outline of the Lesson:

• Introduction of project (20 minutes)

• Opinion Poll project (170 minutes)

• Gallery walk of opinion polls (30 minutes)

Student Activities:

• Watch presentation of sample.

• Develop opinion poll programs.

• Participate in a gallery walk of opinion polls.

Teaching/Learning Strategies:

• Introduction of project
o The Opinion Poll will ask a question and allow the user to pick from a predefined set of answers.

When the user votes, the program keeps a tally and displays the results in a bargraph.
o Run sample poll.py for students so they can see the finished project.
o Show students Opinion Poll Rubric.
o Students will need bargraph.py and poll.py in the same folder for the program to work. They only

need to edit poll.py. bargraph.py does all the graphing using the Pen class. They might want to
peruse it if interested.

o When you try to run poll.py, it will create a bargraph.pyc file. This is a compiled python file.
o If students run their program before they do #4, the program will run infinitely.
o Warning: Using three Lists is not the best way to design this. It would have been better to have

one List of some type of object that held the votes, label and color. Three Lists were used in this
case to get students to practice using them. Depending on your students, you may want to
comment on this as a kind of look ahead to Object Oriented Programming.

• Opinion Poll project
o Divide students into teams. These teams should be different from the previous team project. Use

this opportunity to point out the importance of diverse ideas and styles in a successful project.
o Circulate room and help students get organized as a team and decide on the topic and questions

for their opinion polls.

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 268

o Explain to students that they should each ask friends and family to provide their answers to the
question posed; they will enter the responses once they have completed their program. (This can
be done for homework.)

o Ensure that all teams have data prior to beginning to start programming.
o Circulate room and help students.
o Step 5 in poll.py can be done as

votes[vote] += 1
or

if vote == 0:
 votes[0] += 1
elif vote == 1:
 votes[1] += 1
...

o If students are doing the extra credit and decide to edit the bargraph.py, they will need to run the
file before running poll.py in order to see the changes (This should create a new bargraph.pyc).

• Gallery Walk of Opinion Polls
o Facilitate students in circulating the room voting on answers to each other’s polls.

Resources:

• Opinion Poll Rubric

• poll.py

• bargraph.py

• sample poll.py

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 269

Instructional Days: 25-30

Topic Description: Complete the final project on analyzing earthquake data.

Objectives:

The students will be able to:

• Incorporate all objectives in the unit into the final project.

Outline of the Lesson:

• Presentation of final project (20 minutes)

• Earthquake Analysis program (255 minutes)

• Presentations (55 minutes)

Student Activities:

• Watch presentation of the project.

• Develop Earthquake Analysis Program.

• Complete presentations.

Teaching/Learning Strategies:

• Presentation of final project
o Distribute and explain Final Project description.

 Emphasize that this is real data collected from the Chino Hills quake from July of 2008.
o Run quakesolution.py so students can see a working version.
o Distribute and explain Final Project Suggested Rubric.

• Develop Earthquake Analysis Program
o Pair students and give each group a quake.py and a data file. See seismic data files folder.
o Give students some guidance on what they should consider as a timeline for completion of each

part in quake.py so that they can plan. (These times obviously will vary by pair and do not include
time for the extra credit.)
 Question # 1: 40 minutes
 Question # 2: 40 minutes
 Question # 3: 40 minutes
 Question # 4: 40 minutes
 Question # 5: 40 minutes
 Presentation: 55 minutes

o The window for the graph may seem too wide depending on the resolution of the students’
screens. It was done so to have pretty looking graph fit onto one graph.

o When students experiment with the sampling rate and there is more data than what fits on one
graph, it is possible to clear the screen and reset the x to start at the left side of the screen. This
goes inside your graphing loop:

 Version 2.0

Exploring Computer Science—Unit 6: Computing Applications Page 270

 if x == 490:
 pen.clear()
 pen.up()
 x = -490

 pen.goto(x, 0)
 pen.down()

o If students are stuck, encourage them to go step by step.
 It might help for them to look back on their previous work (especially lists.py and

morelists.py).
o When students finish their program, have them start their presentations

 Aside from an oral explanation, students should prepare their presentations on
powerpoint or a poster; encourage them to be creative.

• Presentations
o Facilitate pairs in presenting their projects
o Have other students grade each group on Peer Grading.

Resources:

• Final Project Description

• Final Project Rubric

• quake.py

• quakesolution.py

• seismic data files folder(UCLA CENS)

• Peer Grading

 Version 2.0

Exploring Computer Science—Unit 6: Handout Day 1 Page 271

Activities

Drawing Class Reference

class Pen()

Define a pen. All functions below can be called as a method on the given pen. The constructor automatically
creates a canvas do be drawn on. The pen is either up (off the canvas) or down (on the canvas and drawing). It
is also pointed in a given direction. The pen starts in the middle (0,0) of the canvas pointed straight up. It keeps
track of it’s current location

forward(distance)

Go forward distance steps.

Example: pen.forward(100)

left(angle)

Turn left angle degrees.

 Example: pen.left(90)

right(angle)

Turn right angle degrees.

Example: pen.right(90)

up()

Move the pen up -- stop drawing.

Example: pen.up()

down()

Move the pen up -- draw when moving.

Example: pen.down()

width(width)

Set the line width to width.

Example: pen.width(5)

 Version 2.0

Exploring Computer Science—Unit 6: Handout Day 1 Page 272

color(s)

color(r, g, b)

Set the pen color. In the first form, the color is specified as a Tk color specification as a string. The second form
specifies the color as a tuple of the RGB values, each in the range [0..1]. For the third form, the color is specified
giving the RGB values as three separate parameters (each in the range [0..1]).

Example: pen.color(‘blue’)

Example: pen.color(0,1,0.75)

write(text)

Write text at the current pen position.

 Example: pen.text(‘Hello’)

circle(radius[, extent])

Draw a circle with radius radius whose center-point is radius units left of the current position. extent determines
which part of a circle is drawn: if not given it defaults to a full circle.

If extent is not a full circle, one endpoint of the arc is the current pen position. The arc is drawn in a counter
clockwise direction if radius is positive, otherwise in a clockwise direction. In the process, the direction of the
pen is changed by the amount of the extent.

Example: pen.circle(10)

goto(x, y)

Go to co-ordinates x, y.

Example: pen.goto(100,0)

begin_fill()

Switch pen into filling mode; Must eventually be followed by a corresponding end_fill() call. Otherwise it will be
ignored.

end_fill()

End filling mode, and fill the shape.

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 2 Page 273

Happy Face Project

Write code that will draw the happy face in the example picture. Have fun!

Square Head:

The lower left corner is at the point (0,0), and the length of each side of the square is 200 units. Therefore, the
other points are (200,0), (200,200) and (0,200).

Eyes:

The eyes each have a radius of 10 units and are centered at (60,150) and (140,150).

Mouth:

The upper left part of the mouth begins at (40,60). The other points are up to you. Hint, try a y value smaller
than 60 for the bottom left of the mouth. For the right side, try x values that are larger.

Nose:

the upper part of the nose begins at (100,100). The other key points are left for you to decide.

 Extra credit to add hair or a body.

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 2 Page 274

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 3 Page 275

Dream House/Car Project

Your task is to use the Pen class to draw your dream house or car. You could actually make a drawing with both.
Use your creativity to make your own original looking house or car. You may want to draw your house on paper
first to figure out the points. There is extra credit for the best assignment as voted on by your peers.

Examples:

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 3 Page 276

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 3 Page 277

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 3 Page 278

 Version 2.0

Exploring Computer Science—Unit 6: Activity Day 3 Page 279

 Version 2.0

Exploring Computer Science—Unit 6: Rubric Day 1 Page 280

Rubrics

House Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

Your house has a pointed roof 4

There is a line that separates the roof from the rest of the house (the
house looks like a square with a triangle on top of it)

4

Your house has a door 2

Extra Credit

Add color to your house 1

TOTAL: 10

 Version 2.0

Exploring Computer Science—Unit 6: Rubric Day 3 Page 281

Dream House /Car Rubric

Do you have? Points
Possible

Yes No Points
Earned

Output

Does your project contain at least one rectangle? 20

Do you have at least one angle that is not a right angle? 10

Do you have a circle in your drawing? 10

Do you use write() to write at least one label on your drawing? 10

Do you use up() and down() to move the pen without drawing
anything?

10

Do you use the goto() method? 10

Do you use more than 1 color? 10

Peer Grading 20

Extra Credit:

Your project is voted best by your peers. 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 6: Rubric Day 7 Page 282

Order Form Rubric

Name: _______________________

Do you have? Points
Possible

Yes No Points
Earned

The Order Form

Does your order form ask the user for the parts of the address
separately?

10

Does your order ask the user for 3 separate items? 10

Do you show your order summary at the end? 10

Do you correctly input all the user’s information into the order? 10

Are there spaces between all the words in your order? 10

Do you use \n to place newlines in your order? 10

Coding Style

Does your file run without errors 10

Do you have meaningful variable names (ex. name) 10

Peer Grading 20

Extra Credit

Include an introduction to your online store 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 6: Rubric Day 15 Page 283

Choose Your Own Adventure Rubric

Name________________________

A Choose Your Own Adventure Story is one where the reader is the main character and gets to make choices
that affect how the story goes. Depending on the choices that the reader makes, the story can have a good, ok
or bad ending.

You will have to come up with your own story and give the user choices. A good place to start is with a decision
tree. That is a diagram that shows all the possible choices and endings. It is a required part of the project.

Do you have? Points
Possible

Yes No Points
Earned

The Story

Does your story give the user 1 or more sets of choices? 5

Does your story give the user 2 or more sets of choices? 10

Does your story give the user 3 or more sets of choices? 10

Does your story give the user 4 or more sets of choices? 5

Does your story have an ending for all possible combinations of
choices?

10

Do you have varying endings, some good, some ok and some bad? 5

Coding

Do you use functions to separate out the different parts of the story 10

Does your story handle errors (the person inputs the wrong number) 5

Decision Tree diagram mapping out all the choices and endings for
your story

20

Peer Grading 20

 Version 2.0

Exploring Computer Science—Unit 6: Rubric Day 15 Page 284

Extra Credit

Have the best project as voted on by peers Up to 10

TOTAL: 100

 Version 2.0

Exploring Computer Science—Unit 6: Rubric Day 21 Page 285

Opinion Poll Rubric

The Opinion Poll will ask a question and allow the user to pick from a predefined set of answers. When the user
votes, the program keeps tally and display the results in a bar graph.

Do you have? Points
Possible

Yes No Points
Earned

Do you ask an appropriate poll question? 15

Do you provide numbered answers for the user to choose from? 10

Do you correctly add the user's vote to the poll results? 10

Do you create a Bar Graph? 10

Does your Bar Graph have the correct labels for each column? 15

Does your poll allow the user to quit easily? 10

Does your Bar Graph use different colors? 10

Make the answer(s) with the most votes appear in a different color in the
bar graph. (For example, the answer with the most votes shows up in blue
and everything else shows up in yellow.)

10

Did you answer the question below? 10

Extra Credit

Have your graph display the percentages of each vote under the labels. (For
example, 14% blue, 86% silver, and 0% red)

up to 10

TOTAL: 100

1. Write down three ways that you used Lists (our friends with the []'s) to help you create your opinion
poll.

2. Why should your first choice that the user can vote on be 0?

3. What was the best part of this project?

 Version 2.0

Exploring Computer Science—Unit 6: Peer Grading Page 286

Name_____________________Computer #____

VOTING

From ALL the projects, choose

1ST Place________

2nd Place________

PEER GRADING

For EACH of the following give the student a score from 1 to 4.

Use the rubric online to decide the score.

4 – Student has everything on the rubric: A

3 – Student has most things on the rubric: B

2 – Student has some things on the rubric: C

1 – Student turned in project, but is missing many items: D

Student Name Score (1-4) Student Name Score (1-4) Student Name Score (1-4)

 Version 2.0

Exploring Computer Science—Unit 6: Peer Grading Page 287

 Version 2.0

Exploring Computer Science—Unit 6: Final Project Page 288

Final Project

Where were you at 11:42 AM on July 29th, 2008? If you were in the Los Angeles area you felt a
magnitude 5.4 earthquake centered in Chino Hills. Your task is going to be to analyze and graph
some of the data collected from that earthquake.

The data was collected by UCLA’s CENS (Center for Embedded Networked Sensing). The sensors
were setup all the way in Peru! They are numbered on the map below.

 Version 2.0

Exploring Computer Science—Unit 6: Final Project Page 289

The data files have the sensor names in them. For example, PE03.EHE.ascii is from sensor 3.
Each sensor has three files, E, N, and Z to record movement in each of the three dimensions.
You will only have to use one of the data files. The data files contain two columns of
information; time and the seismic signal. The time is relative. The data is seismic signal is
recorded 100 times a second.

Your tasks include the following:

• Find the average of the seismic signals. This information can be used to calibrate the
sensors.

• Find the minimum and maximum values.
• Graph the data.

Example graphs (you only need to make one graph):

 Version 2.0

Exploring Computer Science—Unit 6: Final Project Page 290

Links to more information:

• Chino Hills Earthquake Wikipedia Entry -
http://en.wikipedia.org/wiki/Chino_Hills_(Los_Angeles)_earthquake_(CA,_USA),_2008

• CENS seismic research - http://research.cens.ucla.edu/areas/2007/Seismic/

http://en.wikipedia.org/wiki/Chino_Hills_(Los_Angeles)_earthquake_(CA,_USA),_2008�
http://research.cens.ucla.edu/areas/2007/Seismic/�

 Version 2.0

Exploring Computer Science—Unit 6: Final Project Suggested Rubric Page 291

Final Project Suggested Rubric

Do you have? Points
Possible

Yes No Points
Earned

Program

Find average of data values 10

Output the max value in the data 10

Output the min value in the data 10

Output possible earthquake if the max exceeds a certain
amount

10

Create graphs of earthquake data 10

Use data sampling by only looking at every 60th item in data
List

10

Have graph change color when values are above the threshold
for a possible earthquake

10

Use different sampling of every 30 and every 100 items 5

Presentation

State your name(s) and which data set you have 5

Run your program 5

Explain the graphs, how the sampling size changes the graph,
and the pros and cons of different sampling sizes.

5

Answer the question: How did you use Computer Science to
analyze the earthquake data. In other words, how did you
take a file with a bunch of numbers in it and produce a graph
that is easier for people to understand. Make sure to be
descriptive.

10

 Version 2.0

Exploring Computer Science—Unit 6: Final Project Suggested Rubric Page 292

Extra Credit:

Have your program graph data from multiple files in the same
window. See the example graphs section of the project
description.

Up to 10

TOTAL: 100

	Course Overview
	Goals
	Standards
	Hardware
	Software
	Prerequisites

	The Instructional Philosophy of Exploring Computer Science
	Introduction to Curricular Approach
	Concrete Instructional Strategies
	Assessment

	Overview of the Instructional Materials
	Scope and Sequence
	Topic Descriptions and Objectives
	Unit 1: Human Computer Interaction (5 weeks)
	Unit 2: Problem Solving (5 weeks)
	Unit 3: Web Design (6 weeks)
	Unit 4: Introduction to Programming (7 weeks)
	Unit 5: Robotics (7 weeks)
	Unit 6: Computing Applications (6 weeks)

	Unit 1:
	Human Computer Interaction
	Daily Lesson Plans
	Activities
	Final Project

	Daily Overview Chart
	Unit 2:
	Human Computer Interaction
	Daily Lesson Plans
	Activities
	Final Project

	Daily Overview Chart
	Unit 3:
	Web Design
	Daily Lesson Plans
	Flash Animation Supplement
	Final Project

	Daily Overview Chart
	Unit 4:
	Introduction to Programming
	Daily Lesson Plans
	Activities
	Rubrics and Solutions
	Final Project

	Daily Overview Chart
	Unit 5:
	Robotics
	Daily Lesson Plans
	Activities
	Final Project

	Daily Overview Chart
	Unit 6:
	Computing Applications
	Daily Lesson Plans
	Activities
	Rubrics
	Final Project

	Daily Overview Chart
	
	

